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Chapter 1 

INTRODUCTION 

1.1 Incidence and Prevalence of Cancer 

 Cancer is a dreadful human disease, increasing with changing life style, nutrition, 

and global warming. It is a leading cause of death worldwide, accounting for 7.6 million 

deaths (around 13% of all deaths) in 2008. Breast cancer is the most frequently 

diagnosed cancer and the leading cause of cancer death among females, accounting for 

23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading 

cancer site in males, comprising 17% of the total new cancer cases and 23% of the total 

cancer deaths. Lung, stomach, liver, colon and breast cancer cause the most cancer 

deaths each year (Jemal et al. 2011). About 70% of all cancer deaths in 2008 occurred in 

low- and middle-income countries. Deaths from cancer worldwide are projected to 

continue rising, with an estimated 13.1 million deaths in 2030 (Ferlay et al. 2010).  

 In India, 556,400 people died of cancer in 2010 and 71% cancer deaths occurred 

in people aged 30-69 years. The three most common fatal cancers were oral (including lip 

and pharynx 45,800 [22.9%]), stomach (25,200 [12.6%]), and lung (including trachea and 

larynx, 22,900 [11.4%]) in men, and cervical (33,400 [17.1%]), stomach (27,500 [14.1%]), 

and breast (19,900 [10.2%]) in women (Dikshit et al. 2012).  

 

1.2 Cancer Biology 

 Cancer known medically as a malignant neoplasm, is a broad group of various 

diseases, all involving unregulated cell growth. Carcinogenesis is a complex process 

controlled by various signal transduction pathways linked to processes such as 

inflammation, cell differentiation and survival, and metastasis. Most of the players of 

these pathways are interrelated and irregularities in their crosstalk result in impairment of 

cellular functions leading to tumour generation and progression (Bhatnagar and Kim 

2010). There are over 200 different known cancers that afflict humans. Cancers are 
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primarily an environmental disease with 90–95% of cases attributed to environmental 

factors and 5–10% due to genetics (Anand et al. 2008).  

  In the past three decades, huge effort was spent on research into cancer by an 

overwhelming amount of information on diagnosis and treatment. Literature on genetic 

disorders in cancer is extracted and made available in the Online Mendelian Inheritance 

in Man (OMIM) database (Amberger et al. 2009). Catalogue Of Somatic Mutations in 

Cancer (COSMIC) is a web resource on mutations in cancer genes that are detected in 

somatic tissues and in cultured tissue samples (Forbes et al. 2010). Novel cancer target 

proteins have been identified and many compounds that activate or inhibit cancer-

relevant target genes have been developed. CancerResource is a database that 

integrates cancer-relevant relationships of compounds and targets complemented with 

experimental and supporting information on genes and cellular effects (Ahmed et al. 

2011).  

 Cancer-relevant genes have been intensively studied and the fundamental 

hallmarks of cancer were established by Hanahan & Weinberg (2011) and the 

applicability of these concepts will increase the development of new avenues to treat 

human cancer (Figure 1.1). 

 

1.3 Cancer Chemotherapy 

 Apart from the preventive therapies, it is important to find a curative measure 

which holds no loop holes and acts accurately and precisely to curb cancer. Synthetic 

compounds such as alkylating agents and antimetabolites, used to be the only choice for 

cancer chemotherapy (Chabner & Roberts 2005). Most of these drugs, however, injure 

rapidly dividing normal cells and, therefore, have substantial side-effects when 

administered to patients. Novel chemotherapeutic agents were therefore necessary to 

increase survival, delay disease progression and improve tolerability. A search for 

selective anticancer agents that lacked the side effects associated with conventional  
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Figure 1.1: Hallmarks of cancer & its therapeutic targets (Hanahan & Weinberg 2011) 
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chemotherapeutic drugs and could target ‘cancer-specific’ molecules to eliminate cancer 

cells while sparing normal cells, began in late 1980s (Sawyers 2004; Zimmermann, Lehar 

& Keith 2007).  

 Research efforts invested in the discovery and development of therapeutics that 

act as novel molecular targets led to growth in the industry and numerous successful 

drugs reaching the market. Target-based anticancer agents can be classified into two 

categories: recombinant proteins/antibodies and low-molecular-weight compounds. 

Monoclonal antibodies have provided a distinct approach to the treatment of cancer and 

several types of antibodies with diverse pharmacological efficacy have been marketed, 

and many more are currently in clinical trials (Tabrizi & Roskos 2007). Low-molecular-

weight compounds that target cell cycle regulatory proteins has led to the identification of 

many candidate compounds that are able to arrest proliferation and induce apoptosis in 

neoplastic cells. Some of these drugs including Imatinib (Gleevec, also known as STI–

571), Gefitinib (Iressa, also known as ZD1839), Erlotinib (marketed as Tarceva), 

Bortezomib (Velcade) and Tamoxifen are approved for clinical use (Ma & Wang 2009).  

 Successful development of first-in-class drugs is challenging, in part because 

agents directed against individual molecular targets are often found to be less effective at 

treating disease and in some cases, the poor efficacy of these agents can be attributed to 

buffering effects in which the biological system utilizes a redundant mechanism or a drug-

mitigating response (Zimmermann, Lehar & Keith 2007). Consequently, many single-

target anticancer drugs cannot fully correct a complex disease condition such as cancer, 

wherein some approved drugs are now being abandoned for their unexpected low-

response rates or unforeseen adverse effects.  

 An alternative source of anticancer drugs is natural products, which frequently 

seem to be more effective and/or less toxic. In view of the enormous biodiversity of the 

planet, a promising future for natural products seems likely; indeed, far more likely than 

for compounds achievable by synthesis. For the past two decades, marine pharmaceutics 
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has been a developing field in the anticancer drug development arena. This importance of 

natural products in the field of therapeutics may be attributed to their high affinity to the 

target, little loss of entropy when they bind to a protein and their bioavailability. Moreover, 

natural compounds are quite flexible in conformational acquisition in aqueous and 

lipophilic environments (Bhatnagar & Kim 2010). The rate of anticancer drug discovery 

can be increased greatly by targeted screening of natural compounds from ancient 

species as most compounds are normal cellular metabolites and function in signal 

transduction, therefore when new phenotypes arise as a result of mutations, these 

molecules induce mechanisms such as apoptosis and causing senescence. Most of 

these mechanisms eliminate abnormal cells while sparing normal cells (Ma & Wang 

2009). 

 
1.4 Marine Natural Products 

 The ocean covers 71% of the surface area of the globe and constitutes over 90% 

of the habitable space on the planet. In certain marine ecosystems, such as coral reefs or 

the deep sea floor, experts estimate that the biological diversity is higher than in tropical 

rain forests. The first Census of Marine Life involved 2,700 scientists from over 80 

nations, who participated in 540 expeditions around the world wherein 1200 new species 

were formally described during 2000-2010 with another 5,000 or so in glass jars awaiting 

formal description (Ausubel, Crist & Waggoner 2010). Mora et al. (2011) predicted all the 

known species on Earth, and the different categories into which they are grouped, and 

extrapolated an estimate of approximately 8.7 million species on Earth, 2.2 million of 

which live in the ocean. This would mean, they said, that 91% of all marine species are 

yet to be discovered, and that’s after the huge effort put forth by the Census of Marine 

Life.  

 A large proportion of the sea offers untapped sources of potential drugs with 

promising activities due to a large diversity of marine habitats and environmental 

conditions (nutrient availability, sunlight presence and salinity levels). The biota of marine 
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organisms has developed unique metabolic and physiological functions that not only 

ensure survival in extreme habitats but also offer a potential for the production of novel 

enzymes and bioactive metabolites. Although the ‘silent world’ has a much richer 

biodiversity than that of terrestrial areas, efforts to exploit this biodiversity through the 

identification of new chemical compounds have only now begun: approximately 22,000 

natural products of marine origin have been discovered so far, whereas 131,000 

terrestrial natural products exist. The major sources of biomedical compounds are 

sponges (37%), coelenterates (21%) and microorganisms (18%) followed by algae (9%), 

echinoderms (6%), tunicates (6%), molluscs (2%) bryozoans (1%), etc (Blunt et al. 2011).  

 The first drug from the sea, Ziconotide (ω-conotoxin MVIIA), a peptide originally 

from a tropical marine cone snail was approved in the United States in 2004 under the 

trade name Prialt for the treatment of chronic pain in spinal cord injury (Molinski et al. 

2008).  The second drug was an antitumour compound Trabectedin extracted from a 

tropical sea-squirt which was approved by the European Union in October 2007 for the 

treatment of soft-tissue sarcoma (D'Incalci & Galmarini 2010).  Eribulin mesylate is a 

novel microtubule dynamics inhibitor with a unique mechanism of action and is the only 

single agent to date that has been shown to prolong overall survival in patients with 

heavily pretreated metastatic breast cancer (Gradishar 2011). The global marine 

pharmaceutical pipeline consists of three Food and Drug Administration (FDA) approved 

drugs, one European Union registered drug, 13 natural products (or derivatives thereof) in 

different phases of the clinical pipeline and a large number of marine chemicals in the 

preclinical pipeline are shown in Table 1.1.  

 India is among one of the 12 mega-biodiversity countries and 25 hot-spots of the 

richest and highly endangered eco-regions of the world. It has a coastline of about 7517 

km, 5423 km along the mainland and 2094 km in the Andaman and Nicobar Islands and 

Lakshadweep Islands. It boasts of around 844 species of seaweeds distributed among 

217 genera, 486 species of sponges,  218  species  of  hard  corals, yet, only a handful of  



Anticancer potential of marine algae - a chemoinformatics approach  Page | 7 

 

 

Table 1.1: The odyssey of marine pharmaceuticals (Mayer et al. 2010) 

Clinical 
status 

Compound name Trademark 
Marine 
organism 

Chemical class Company / Institution Disease area 

Approved 

Cytarabine, Ara-C Cytosar-U® Sponge Nucleoside Bedford, Enzon Cancer 

Vidarabine, Ara-A Vira-A® Sponge Nucleoside King Pharmaceuticals Antiviral 

Ziconotide Prialt® Cone snail Peptide Elan Corporation Pain 

Trabectedin (ET-743) Yondelis® Tunicate Alkaloid PharmaMar Cancer 

Phase III 
Eribulin Mesylate (E7389) NA Sponge Macrolide Eisai Inc. Cancer 

Soblidotin (TZT 1027) NA Bacterium Peptide Aska Pharmaceuticals Cancer 

Phase II 

DMXBA (GTS-21) NA Worm Alkaloid Comentis 
Cognition, 
Schizophrenia 

Plinabulin (NPI-2358) NA Fungus Diketopiperazine Nereus Pharmaceuticals Cancer 

Plitidepsin Aplidin® Tunicate Depsipeptide Pharmamar Cancer 

Elisidepsin Irvalec® Mollusc Depsipeptide Pharmamar Cancer 

PM1004 Zalypsis® Nudibranch Alkaloid Pharmamar Cancer 

Tasidotin, Synthadotin (ILX-
651) 

NA Bacterium Peptide Genzyme Corporation Cancer 

Pseudopterosins NA Soft coral 
Diterpene 
glycoside 

NA Wound healing 

Phase I 

Bryostatin 1 NA Bryozoa Polyketide National Cancer Institute Cancer 

Hemiasterlin (E7974) NA Sponge Tripeptide Eisai Inc. Cancer 

Marizomib (Salinosporamide 
A; NPI-0052) 

NA Bacterium 
Beta-lactone-
gamma lactam 

Nereus Pharmaceuticals Cancer 
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Table 1.2: Marine derived anticancer agents with biological functions  

Type of 
Organism 

Organism Compound  Structure  Mode of Action 

Actinomycete 
Micromonospora 
marina 

Thiocoraline Thiodepsipeptide 
Inhibits DNA polymerase by high affinity 
bisintercalaton with minor groove of DNA 

Alga Laurencia viridis Dehydrothyrsiferol Triterpene 
Multiple pathways for growth inhibition and apoptosis, 
mechanism uncertain 

Alga 
Laurencia 
intricata 

Laurenditerpenol Diterpene 
Inhibits induction of the HIF1 transcription factor and 
downstream VEGF, etc 

Bryozoa Bugula neritina Bryostatin 1  Macrolide 
Partial agonist of PKC causing activation of PKC and 
down-regulation of other isoforms 

Dinoflaggelate 
Gymnodinium 
breve 

GA3 Polysaccharide Polysaccharide Inhibition of topoisomerase I and II 

Dogfish Shark 
Squalus 
acanthias 

Squalamine Aminosteroid 
Blocks angiogenesis by inhibiting mitogen-induced 
growth and migration of endothelial cells 

Marine Fungus Fusarium sp. Sansalvamide A Depsipeptide 
Topoisomerase inhibitor but appears to have another 
(unknown) mechanism of action 

Mollusk Elysia rufescens Kahalalide F Depsipeptide 
Oncosis related to inhibiiton of ErbB3 receptor and 
downstream PI3K-Akt pathway 

Sea cucumber 
Cucumaria 
frondosa 

Frondoside A Triterpenoid glycoside 
Growth inhibition via induction of P21waf1 and 
apoptosis 

Sea cucumber 
Pentacta 
qaudrangulari 

Philinopside A Sulfated saponin 
Inhibits receptor tyrosine kinases involved in 
proliferation and angiogenesis 

Sea Hare 
Dolabella 
auricularia 

Dolastatins Pentapeptides 
Inhibit microtubule assembly by blocking tubulin 
polymerization 

Sea slug Elysia ornata Lamellarin D Polyaromatic alkaloid 
Topoisomerase 1 inhibition and other effects leading 
to apoptosis via mitochondrial pathway 

Sea Squirt 
Cystodytes 
dellechiajei  

Ascididemin  Alkaloid  
DNA cleavage by generation of reactive oxygen 
species and induction of apoptosis 
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Sea Squirt 
Trididemnum 
solidum 

Didemnin B Cyclic depsipeptide 
Binds to elongation factor eEF1A and blocks protein 
synthesis 

Sea squirt 
Ecteinascidia 
turbinata 

Trabectedin 
(Ecteinascidin 743) 

Tetrahydroisoquinolone 
alkaloid 

Prevents binding of transcription factors to DNA and 
prevents nucleoside excision repair 

Sea squirt  
Aplidium 
albicans 

Aplidine 
(dehydrodidemnun B) 

Cyclic depsipeptide 
Induces apoptosis via stress-activated kinases and 
inhibits VEGF secretion 

Sponge Spongia sp.  Agosterol A 
Hydroylated sterol 
acetate 

Reverses Pgp and MRP1-mediated drug resistance by 
direct interaction 

Sponge 
Chondropsis 
spongia 

Chondropsins Macrolide lactam 
Inhibition of V-ATPases involved in invasion and multi-
drug resistance 

Sponge Petrosia spongia Dideoxypetrosynol  Polyacetylene 
G1 cell cycle arrest and apoptosis via induction of 
P16ink4 and decrease in RB phosphorylation 

Sponge 
Xestospongia 
exigua 

Dihydromotuporamine Macrocyclic Alkaloid 
Blocks invasion remodeling of stress fibers, focal 
adhesion and RHO activation 

Sponge 
Halichondria 
okadai 

Halichondrin B Macrolide 
Inhibit microtubule assembly by blocking tubulin 
polymerization 

Sponge 
Hemiasterella 
minor 

Hemiasterlin Tripeptide 
Inhibit microtubule assembly by blocking tubulin 
polymerization 

Sponge 
 Zyzzya 
fuliginosa 

Makaluvamines 
Pyrroloquinoline 
alkaloid 

Topisomerase II inhibtion and possibly other 
mechanisms 

Sponge 
Mycale 
hentscheli 

Mycalamides A & B Polyketides 
Inhibition of protein synthesis and induction of 
apoptosis 

Sponge 
Xestospongiacf.  
Carbonaria 

Neoamphimedine Alkaloid 
Induces catenation of DNA in presence of active 

topoisomerase II 

Sponge 
Mycale 
hentscheli 

Peloruside A Macrolide 
Stabilizes microtubules destroying normal cytoskeletal 
function 

Worm 
Cephalodiscus 
gilchristi 

Cephalostatins Steroidal alkaloid  
Induction of apoptosis via release of Smac/DIABLO 
from mitochondria 
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the marine organisms and their utility in daily life are known to us (Demunshi & Chugh 

2009). It is clear from the research efforts that the marine environment represents an 

important source of unknown natural compounds whose medicinal potential are yet to be 

evaluated. The contribution of marine natural products to the future pharmacopeia seems 

to be promising and Table 1.2 illustrates the marine anticancer compounds and their 

associated bioactivity to underline the importance of marine derived compounds in 

anticancer drug discovery. 

  

1.5 Seaweed - A Renewable Rich Marine Resource 

 Marine plants comprise of algae, sea grasses, mangroves and sand dune 

vegetation. About 90% of the species of marine plants are algae and about 50% of the 

global photosynthesis is algal derived. The oceans provide unlimited space for capturing 

solar energy by marine plants through photosynthesis. Thus, every second molecule of 

oxygen we inhale comes from algae and algae reuse every second molecule of carbon 

dioxide we exhale (Melkinian 1995). Once considered a taxonomist's delight, algae 

represent a large group of genetically diverse, heterogeneous photosynthetic organisms 

belonging to different phylogenetic groups and evolutionary lineages, with approximately 

30,000 known species. Algae are defined as primitive plants (thallophytes) and lack well-

defined structures such as roots, shoots, leaves, seeds and fruits. They can be 

microscopic or macroscopic, prokaryotic or eukaryotic, unicellular or multicellular, motile 

or non-motile, attached or free-living, terrestrial or aquatic (marine or freshwater) and 

aerial or sub-aerial. Algae are heterogeneous group of plants with a long fossil history.  

 Two major types of algae can be identified: the macroalgae (seaweeds) occupy 

the littoral zone, which included Chlorophyta (green algae), Phaeophyta (brown algae) 

and Rhodophyta (red algae), and the micro algae are found in both bentheic and littoral 

habitats and also throughout the ocean waters as phytoplankton (Garson 1989). 

Phytoplankton comprises of organisms such as diatoms (bacillariophyta), dinoflagellates 
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(dinophyta), green and yellow-brown flagellates (chlorophyta; prasinophyta; 

prymnesiophyta, cryptophyta, chrysophyta and rhaphidiophyta) and blue-green algae 

(cyanophyta). As photosynthetic organisms, this group plays a key role in the productivity 

of oceans and constitutes the basis of the marine food chain. The characteristic green 

colour of green algae is mainly due to the presence of chlorophyll a and b in the same 

proportion like higher plants. The brown colour of brown algae results from the 

dominance of the xanthophyll pigments and fucoxanthin; this masks the other pigments, 

chlorophyll a and c, β-carotenes and other xanthophylls. Food reserves of brown algae 

are typically complex polysaccharides and higher alcohols. The principal carbohydrate 

reserve is laminarin. The cell walls are made of cellulose and alginic acid. The red colour 

of red algae results from the dominance of the pigments phycoerythrin and 

phycothcyanin; this masks other pigments, chlorophyll a (not chlorophyll b), β-carotene 

and a number of unique xanthophylls. The walls are made of cellulose, agars and 

carrgeenans (Bold et al. 1985).  

 

Figure 1.2: Molecular structures of agar, -carrageenan & alginate polysaccharides 
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 Seaweeds are among the first marine organisms chemically analyzed, with more 

than 3,600 articles published describing 3,300 secondary metabolites from marine plants 

and algae, and they still remain an almost endless source of new bioactive compounds 

(Ioannou & Roussis 2009).  Marine algae became an industrial resource much earlier 

than marine invertebrate and marine microorganisms (including phytoplankton). The three 

commercially important phycocolloids obtained from seaweeds are alginates, agar-agar 

and carrageenan (Figure 1.2) and their production is valued US $ 213 million, 132 million 

and 240 million annually respectively (Dhargalkar & Verlecar 2009). None of the alginate 

yielding seaweeds is cultured so far, as they cannot grow by vegetative means. Only 

Laminaria japonica, an alginate yielding seaweed is being cultivated in China mainly for 

food while some surplus used for the extraction of alginate. 80% of carrageenan 

production is by cultivation of Kappaphycus alvarezii and Eucheuma denticulatum. Agar-

agar is derived principally from two genera of red seaweed namely Gelidium and 

Gracilaria. The multipurpose uses of seaweed phycocolloids, such as emulsifier in dairy 

products, leather, textile and pharmaceutical industries, treatment of arthritis, metal 

poisoning, bone grafting, immobilization of biological catalyst in the industrial processes, 

therapeutic health booster, beauty enhancer etc; have immense value (Dhargalkar & 

Periera 2005). The demand for phycocolloid increases by 8 to 10% every year.  

 The importance of seaweeds for human consumption is well-known since 300 BC 

in China and Japan. These two countries are the major seaweed cultivators, producers 

and consumers in the world. Several red algae are eaten; amongst these is dulse 

(Palmaria palmate) and carrageen moss (Chondrus crispus and Mastocarpus stellatus). 

However, ‘Nori’ popularized by the Japanese is the single most valuable marine crop 

grown by aquaculture with a value in excess of US $ 1 billion (El Gamal 2010). In the 

Indian Ocean region countries like Malaysia, Indonesia, Singapore, Thailand, Korea etc., 

seaweeds are used in salad, jelly, soup etc. In India, however, seaweed consumption is 

negligible except in the preparation of porridge from Gracilaria sp. and Acanthophora sp. 
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in coastal states of Kerala and Tamil Nadu. The total harvest from Indian coast is about 

100,000 metric tonnes (wet weight) annually. Most people unknowingly utilize seaweed 

products daily in the form of processed food items like processed dairy, meat and fruit 

products and domestic commodities like paint, toothpaste, solid air fresheners, cosmetics, 

etc. Seaweeds are excellent sources of vitamins A, B1, B12, C, D & E, riboflavin, niacin, 

pantothenic acid and folic acid as well as minerals such as Ca, P, Na, and K. Their amino 

acid content is well balanced and contains all or most of the essential amino acids 

needed for life and health. They have more than 54 trace elements required for the 

human body's physiological functions in quantities greatly exceeding vegetables and 

other land plants. These essential elements are in a chelated, colloidal and optimally 

balanced form and hence they are bio-available (Dhargalkar & Periera 2005).  

 Seaweeds are also used to prepare seaweed meals as supplementary to the daily 

ration of the cattle, poultry and other farm animals. It has been established that seaweed 

meal increases fertility and birth rate of animals and also improves yolk colour in eggs. 

Besides its use as a feed, seaweeds can also be employed as water purifier, as it 

recycles the fish-waste polluted water in aquaculture. Seaweed manure besides 

increasing the soil fertility increases the moisture holding capacity and supplies adequate 

trace metals thereby improving the soil structure. Seaweed is also a major ingredient of 

ink composition, fishing technology and corrosion resistant metals industry.  

 Algae have now begun to fascinate technologists for use in biofuel as it can create 

clean renewable fuels, remediate wastewater and still produce high-value biochemicals. 

The anaerobic digestion of the green seaweed Chaetomorpha litorea Harvey generated 

80.5L of total biogas per kg of dry biomass under 21 kg pressure (Sangeetha & 

Rengasamy 2011).  The benefits of producing green fuel from seaweed is, it is fast-

growing and doesn’t use up scarce water resources during its production and can be 

grown cheaply on the edge of the sea coastlines.  Wargacki et al. (2012) genetically 

engineered bacteria that could metabolize alginate polysaccharides in seaweed and turn 
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them into bioethanol, achieving a titre of 4.7% volume/volume and a yield of 0.281 weight 

ethanol/weight dry macroalgae (equivalent to ~80% of the maximum theoretical yield from 

the sugar composition in macroalgae).  

 Seaweed dietary fibers have varied beneficial effects on human health such as 

hypertension, diabetes, hyperglycemia reduction, antimutagenic (e.g. oral carcinoma), 

antiviral agents, antiaging, antioxidants, hypothyroidism, transfusion, anticoagulant, anti-

inflammatory, antihelmintic, wound-healing, antihypercholesterolemia (decreasing lipid 

and triglycerides levels), bone grafts, cleansing effect in digestive tract, bone calcification, 

metal poisoning, reinforcement of immune system, sources of vitamins and minerals and 

improvement of skin elasticity, moisture and firmness. Seaweed has also been employed 

as dressings, ointments and in gynecology. All seaweeds offer an extraordinary level of 

potassium that is very similar to our natural plasma level. Worldwide research indicated 

that seaweed extract is similar to human blood plasma. Two Japanese surgeons used a 

novel technique of mixing seaweed compounds with water to substitute whole blood in 

transfusion and this was successfully tried in over 100 operations. Seaweeds are one of 

the richest sources of iodine, and have been used traditionally as a treatment for thyroid 

disease and goiter in many countries, as well as for improving metabolism and preventing 

obesity (Dhargalkar & Periera 2005).  

 

1.6 Biological Activities of Marine Algae    

 There are numerous reports of compounds derived from macroalgae with a broad 

range of biological activities, such as antibacterial (Nair et al. 2007), antiviral (Ahn et al. 

2002), anticoagulant (Athukovala et al. 2006) and antifouling (Hellio et al. 2004). Red 

algae of the genus Laurencia (Rhodomelaceae) is a cosmopolitan species with a wide 

distribution throughout the world. Their secondary metabolites include sesquiterpenes, 

diterpenes, triterpenes, and acetogenins that are usually characterized by the presence of 

one or more halogen atoms in their structures. Due to their relatively high degree of 



 

Anticancer potential of marine algae - a chemoinformatics approach  Page | 15 

 

halogenation, many of these molecules either are biologically active or play an ecological 

role in their ecosystem, often exhibiting  antibacterial, antifungal, antiviral, anti-

inflammatory, antiproliferative, cytotoxic, antifouling, antifeedant, ichthyotoxic, and/or 

insecticidal activity (Lhullier et al. 2009). 

 

1.6.1 Antibacterial Activities of Marine Algae 

 The extracts and active constituents of various algae have been shown to have 

anti-bacterial activity in vitro against Gram-positive and Gram-negative bacteria. The 

production of antimicrobial compounds was considered to be an indicator for the capacity 

of the seaweeds to synthesize bioactive secondary metabolites (González del Val et al. 

2001). Green algae extract of Caulerpa prolifera exhibited moderate to significant activity 

against unidentified strains of marine bacteria (Smyrniotopoulos, 2003). Cycloeudesmol 

isolated from green alga Chondria oppositiclada Dawson was found to be potent antibiotic 

against Staphylococcus aureus and Candida albicans (Fenical & Sims 1974). Elatol and 

iso-obtusol isolated from red algae Laurencia majuscula Harvey exhibited antibacterial 

activity by bacteriostatic mode with significant activity against Klebsiella pneumonia and 

Salmonella sp. (Vairappan 2003).  

 

1.6.2 Antifungal Activities of Marine Algae 

 Eight novel diterpene-benzoic acids, Callophycoic acids A–H, and two 

halogenated diterpene-phenols, Callophycols A and B, were isolated from red alga 

Callophycus serratus some of which displayed moderate antibacterial, antimalarial, 

antitumour and antifungal activity (Lane et al. 2007). Capisterones A and B are triterpene 

sulphate esters isolated from green alga Panicillus capitatus, which exhibited potent 

antifungal activity against the marine algal pathogen Lindra thallasiae (Puglisi et al. 2004). 

A meroditerpenoid was isolated from the brown alga Cystoseira tamariscifolia that 

possesses anti-fungal activity against three tomato pathogenic fungi and antibacterial 
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activity against Agrobacterium tumefaciens and Escherichia coli (Bennamara et al. 1999). 

Lobophorolide was isolated from brown alga Lobophora variegate and displayed a potent 

and highly specific activity against the marine filamentous fungi Dendroyphiella salina and 

Lindra thalassiae and a potent activity against Candida albicans (Kubanek et al. 2003). 

 

1.6.3 Antiviral Activities of Marine Algae 

 Sulfoquinovosyldiacylglycerol, KM043, a potent inhibitor of eukaryotic DNA 

polymerases and HIV-reverse transcriptase type 1 was isolated from a marine red alga, 

Gigartina tenella (Ohta et al. 1998). A new dollabelladiene derivative isolated from the 

brown alga Dictyota pfaffi showed strong anti-HSV-1 activity in vitro but little inhibition of 

HIV-1 reverse transcriptase (Barbosa, Teixeira & Pereira 2004). The phlorotannin 

derivatives from the brown alga Ecklonia cava, are inhibitors of HIV-1 reverse 

transcriptase (RT) and protease which were comparable to that of a reference compound 

nevirapine (Ahn et al. 2004). 2,3,6-Tribromo 4,5-dihydroxybenzyl methyl ether isolated 

from the red alga Symphyocladia latiuscula was active against wild type HSV-l, as well as 

APr HSV-I and TK-HSV-l and significantly delayed the appearance of lesions in infected 

mice without toxicity (Park et al. 2005). 

 

1.6.4 Antioxidant Activities of Marine Algae 

 Meroterpenoids of the chromene class, Sargachromanols A–P isolated from the 

brown alga Sargassum siliquastrum exhibited significant activity in the DPPH ( 2,2-

diphenyl-1-picrylhydrazyl) antioxidant assay (Jang et al. 2005). Also plastiquinones 

isolated from brown alga S. micracanthum displayed significant antioxidant activity 

(Iwashima et al. 2005). Brown alga Sargassum thunbergii afforded a novel chromene, 

Sargothunbergol A, as a free radical scavenger (Seo, Park & Nam 2007). 

Fucodiphlorethol G, a tetrameric phlorotannin, was isolated from Ecklonia cava (Ham et 

al. 2007), and three bromophenols isolated from the red alga Polysiphonia urceolate were 
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potent DPPH radical scavengers (Li et al. 2007). Acanthophora spicifera one of the most 

common species along the Mandapam coast exhibited free radical scavenging and 

antioxidant activities by both in vitro and in vivo studies (Vasanthi et al. 2005, Vasanthi et 

al. 2013). 

 

1.6.5 Antiplasmodial Activities of Marine Algae 

 Ethanolic extract of twelve seaweeds species collected from Mandapam (South 

east coast of India) were tested for in vitro antiplasmodial activity against Plasmodium 

falciparum where Gracilaria verrucosa and Hypnea espera showed good antiplasmodial 

activity comparable with the positive controls Artemether and Chloroquine (Ravikumar, 

Inbaneson, & Suganthi 2011). Hot water crude extracts of some brown, green and red 

algae from the Persian Gulf inhibited Leishmania major promastigote (Fouladvand et al. 

2011).  Snyderol sesquiterpene derivative isolated from the red alga Laurencia obtusa 

was active against D6 and W2 clones of the malarial parasite Plasmodium falciparum 

(Topeu et al. 2003). 

 

1.6.6   Neuroprotective Activities of Marine Algae 

 The extract of the brown seaweed Padina boergesenii and the red seaweed 

Hypnea valentiae was found to detoxify (in vitro) the venom of Naja nigricollis. There was 

a remarkable reduction in the mortality of albino mice after intraperitoneal (i.p.) 

administration of reconstituted venom with the extract compared to those challenged with 

the venom only (Vasanthi et al. 2003). The methanol extract of eight seaweeds inhabiting 

South Indian coastal area (Hare Island, Gulf of Mannar Marine Biosphere Reserve) was 

studied for their neuroprotective effect; Hypnea valentiae, Padina gymnospora, Ulva 

reticulata and Gracilaria edulis exhibited inhibitory activity to acetylcholinesterase with 

IC50 value of 2.6, 3.5, 10 and 3mg/ml respectively, while H. valentiae, Enteromorpha 

intestinalis, Dictyota dichotoma and U. reticulata showed 50% inhibition to butyryl 
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cholinesterase at concentration 3.9, 7, 6.5 and 10 mg/ml respectively. The inhibitory 

activities of the seaweed extracts were comparable to the standard drug donepezil 

(Suganthy, Pandian & Devi 2010).  

 

1.6.7 Cytotoxic Activities of Marine Algae 

 The alcoholic extract of the red alga Acanthophora spicifera exhibits tumoricidal 

activity on Ehrlich’s ascites carcinoma cells developed in mice at a dose of 200mg/kg, 

comparable to the standard drug, 5-flurouracil. This is evidenced by increase in the mean 

survival time, decrease in tumor volume, and viable cell count. The smear study exhibits 

membrane blebbing, vacuole formation, and reduction in staining intensity, which further 

ascertains the tumoricidal activity (Vasanthi, Rajamanickam & Saraswathy 2004). 

Recently, methanolic extracts of seven brown seaweeds occurring in the Indian coastal 

waters were screened and have been reported for their cytotoxic and antioxidant 

properties (Vinayak, Sabu & Chatteri 2011). Likewise, Monoterpinoids, Sargol, Sargol-I 

and Sargol-II were isolated from the brown alga Sargassum tortile also exhibited cytotoxic 

activity (Numata et al. 1991).  

 Oxygenated desmosterols of the red alga Galaxaura marginate exhibited 

significant cytotoxicity towards serveral cancer cell lines such as P388, KB, A549 & HT29 

(Sheu, Huang & Duh 1996). Bromophycolide A was cytotoxic against several human 

tumour cell lines by specific induction of apoptosis (Kubanek et al. 2005). 

Bromophycolides C-I from the Fijian red alga Callophycus serratus displayed modest 

antineoplastic activity against a range of human tumor cell lines. The most selective of 

these was bromophycolide H, with its strongest activity against breast tumour cell line 

DU4475 (IC50=3.88 μM) (Kubanek et al. 2006). Bromoditerpenes from the red alga 

Sphaerococcus coronopifolius exhibited cytotoxic activity on the NSCLC-N6-L16 and 

A549 human lung cancer cell lines (Smyrniotopoulos et al. 2008). All three cuparene 

sesquiterpenes isolated from Laurencia microcladia were found to exhibit significant 
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cytotoxic activity against two lung cancer cell lines (Kladia et al. 2006). Though the 

cytotoxic activity cannot be correlated with the presence or absence of specific functional 

groups, and it was probably influenced by a combination of factors, including the overall 

three-dimensional structure of the molecules and the spatial orientation of their 

substituents (Lhullier et al. 2009).  Thus it is clear that seaweeds are indeed a gold mine 

of metabolites responsible for a wide variety of biological activity. 

 

1.7  Anticancer Pharmacology of Marine Algae 

1.7.1  Chlorophyta 

 To design effective drugs against cancer, it is mandatory to understand the 

underlying tumour physiology and the changes occurring in the tumour microenvironment. 

The enzymes that control the number and topological conformations of supercoils in DNA 

are topoisomerases. Kanegawa et al. (2000) screened 304 marine algae samples that 

were collected from various Japanese coasts. In particular, the MeOH extract from the 

green alga Caulerpa sertularioides strongly inhibited telomerase activity when added to a 

MOLT-4 cell culture. The enzyme Inosine 5'-Phosphate Dehydrogenase (IMPDH) 

catalyzes the NAD-dependent oxidation of Inosine 5’-Phosphate (IMP) to Xanthosine 5’-

monophosphate and is the key enzyme in de novo GTP biosynthesis (Carr et al. 1993). 

The two substrates of IMPDH bind in an obligate order - IMP precedes NAD, and the 

products also dissociate in an obligate fashion, with NADH preceding xanthosine 5’-

monophosphate. The activity of IMPDH is tightly linked with cell proliferation and the 

inhibition of IMPDH has anticancer, antiviral, and immunosuppressive effects (Jackson et 

al. 1975). Gerwick and coworkers (1994) at Oregon State University evaluated over 500 

extracts of marine microalgae (primarily cyanobacteria) and macroalgae for their ability to 

inhibit IMPDH. This assay yielded twenty-four active extracts and resulted in the isolation 

of the bromophenolic compound isorawsonol (IC50 = 18 μM) from the tropical marine 

green alga Avrainvillea rawsonii (Chen 1994). 
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Figure 1.3: Selected of marine algae of medicinal value 
 

 
 

  
 
 

 

 
 

Caulerpa sp. Avrainvillea rawsonii 

 

Chlorophyta 

Phaeophyta 

Ecklonia sp. 

Rhodophyta 

Hypnea musciformis Callophycus oppositifolius Palmaria palmate 

Gracilaria verrucosa Laurencia majuscule Acanthophora spicifera 

Turbinaria sp. Undaria pinnatifida 

Ulva fasciata 



 

Anticancer potential of marine algae - a chemoinformatics approach  Page | 21 

 

1.7.2 Phaeophyta 

 Matrix metalloproteinases (MMPs), a zinc dependant endopeptidases that 

degrade the extracellular matrix, have been extensively focused due to their evident role 

in carcinogenesis and cellular invasion by catabolizing the extracellular matrix (Gill & 

Parks 2008). Apart from playing a major role in invasion, angiogenesis, and metastasis 

during tumour progression, MMPs are also important for cancer cell transformation, 

growth, apoptosis, signal transduction and immune regulation. MMP inhibitory effects of 

phlorotannins from the marine brown alga Ecklonia cava have revealed that its extract 

could specifically inhibit both MMP-2 and MMP-9 activities significantly (P<0.001) at a 

concentration of 10 μg/mL in human dermal fibroblasts and HT1080 cells by fluorometric 

assay. In addition, Ecklonia cava extract did not exert any cytotoxic effect even at 

100μg/mL, proposing its potential use as a safe MMP inhibitor (Kim et al. 2006). MMP-1 

expression was dramatically attenuated by treatment with Eckol or Dieckol which were 

purely isolated from Ecklonia stolonifera, indicating that these compounds are active 

principles to inhibit MMP-1 expression in human dermal fibroblasts (Joe et al. 2006).  

 Nuclear factor-B (NF-B) is a ubiquitous transcription factor, a dimer of proteins 

of the Rel family including NF-B1 (p50), NF-B2 (p52), RelA (p65), RelB and c-Rel, 

whose deregulated expression may lead to cancer (Keutgens et al. 2006). NF-B is 

activated by various stimuli, including TNF- (tumor necrosis factor-), interleukin-1 and 

lipopolysaccharide (LPS). Extracts from three species of Alariaceae, Eisenia bicyclis, 

Ecklonia cava and Ecklonia stolonifera, have showed strong inhibition of both NF-B and 

AP-1 (Activator protein 1) reporter activity (Joe et al. 2006). Phlorofucofuroeckol A 

isolated from the edible brown algae Ecklonia stolonifera inhibited activation of Akt and 

p38 MAPK in LPS-treated RAW 264.7 cells, and also regulates iNOS and COX-2 

expressions through the NF-B-dependent transcriptional control associated with 

inhibition of multiple signalling  proteins, suggesting potential candidates of phloroglucinol 

derivatives for treatments of inflammatory diseases (Kim, Lee & Shin 2011). 
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 A glycoprotein from the brown alga Laminaria japonica displayed several 

apoptotic features, such as DNA fragmentation, sub-G1 arrest, caspase-3 activation, and 

poly (ADP-ribose) polymerase (PARP) degradation in HT-29 colon cancer cells. 

Mechanism of apoptosis may be mediated via multiple pathways, including the Fas 

signaling pathway, the mitochondrial pathway, and cell cycle arrest (Go, Hwang & Nam 

2010). Fucoxanthin, a carotenoid from the edible seaweed Undaria pinnatifida induces 

apoptosis and enhances the antiproliferative effect of the peroxisome proliferator-

activated receptor (PPAR) ligand, troglitazone, on human colon cancer cells lines, Caco-

2, HT-29 and DLD-1 (Hosokawa et al. 2004). 

 Antimitotic agents are classified as tubulin interactive agents, those that interfere 

with the polymerization or depolymerization of tubulin. Actin inhibitors are those that 

interfere with the polymerization or depolymerization of actin, and kinesin inhibitors are 

those that disrupt the function of kinesin motor proteins. The compound 14-ketostypodiol 

diacetate from the brown alga Stypopodium flabelliforme inhibited microtubules by 

delaying the lag period associated to nucleation events during assembly, and decreased 

significantly the extent of microtubule polymerization in DU-145 human prostatic cells. It 

also inhibited cell proliferation by affecting the protease secretion and the in vitro invasive 

capacity, both properties of cells from metastases (Depix et al. 1998). 

 

1.7.3 Rhodophyta 

 Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor that is 

composed of a hypoxia-inducible α subunit (HIF-1α and HIF-2α) and a constitutively 

expressed β subunit (HIF-1β). HIF mediates the adaptation of cells and tissues to low 

oxygen concentrations. Tumour progression is associated with not only increased 

microvascular density but also with intratumoral hypoxia (Höckel & Vaupel 2001). Loss of 

HIF-1 activity has been shown to have immense negative effects on tumour growth, 

vascularization and energy metabolism in xenograft assays (Semenza 2001; Kung et al. 
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2000). Thus a number of HIF inhibitors have been designed with the aim of finding new 

direction to tumour therapy. Laurenditerpenol, isolated from bioassay-guided fractionation 

of the lipid extract of Laurencia intricata, yielded the first marine natural product that 

inhibited HIF-1 activation (Mohammed et al. 2004). It was shown to inhibit HIF-1 

activation by blocking hypoxia-induced HIF-1 protein accumulation and suppressed 

mitochondrial oxygen consumption at ETC complex I at an IC50 value of 0.8 μM.  

 Halomon [6(R)-bromo-3(S)-bromomethyl)-7-methyl-2,3,7-trichloro-1-octene] was 

first isolated from the red alga Portieria hornemannii (Lynbye) collected in the Philippines 

in 1992. Halomon exhibited strong differential cytotoxicity to brain, renal, and colon 

derived cell lines in the National Cancer Institute’s in vitro human tumour cell line screen. 

On the basis of its unprecedented cytotoxicity profile, halomon was selected by the NCI 

for preclinical drug development (Fuller et al. 1992). However, research and development 

of halomon as an anticancer lead has been limited by the lack of a reliable natural source 

and failure to show in-vivo effects. Andrianasolo et al. (2006) rediscovered the red alga, 

P. hornemannii at Madagascar. The organic extract possessed a potent inhibitory activity 

to the DNA methyltransferase-1 (DNMT-1) isoform. DNMT-1 causes methylation of the 

cytosine phosphodiester-linked guanine dinucleotide (CpG) by catalyzing the transfer of a 

methyl group from S-adenosylmethionine to the 5’ position on cytosine residues residing 

at CpG sites. In many cancers, promoters of tumor suppressor genes are silenced by 

hypermethylation at CpG sites, and thus, the inhibition of DNMT-1 could potentially 

reverse tumor growth. Halomon and (3Z)-6-bromo-3-(bromomethylidene)-2-chloro-7-

methylocta-1,6-diene were tested for DNMT-1 enzyme inhibition assay and were found to 

have 1.25 and 1.65 μM activities respectively (Andrianasolo et al. 2006). 

 At least 19 different DNA polymerases have been identified in eukaryotic cells. 

Ohta et al. (1998) found that the sulfolipid metabolite Sulfoquinovosyldiacylglycerol (KM-

043) isolated from a marine red alga Gigartina tenella inhibited eukaryotic DNA 

polymerases α and β (IC50 = 0.25 and 3.6μM, respectively) and HIV-reverse transcriptase 
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type 1 but did not influence the activities of prokaryotic DNA polymerases. 2,3,6-tribromo-

4,5-dihydroxybenzyl alcohol and  its methyl ether were isolated from the marine red alga 

Symphyocladia latiuscula, which completely inhibited  1.5 units of Taq DNA polymerase 

at 0.5 μg and 5 μg respectively (Jin et al. 2008). 

 Apoptosis represents a universal and efficient form of cell death that is executed 

through a highly ordered intrinsic cellular suicide program. Mutations that cause 

uncontrolled cell growth and those that lead to insufficient cell death occur commonly in 

neoplasia and contribute to the etiology of cancer. Elucidation of the apoptotic pathways 

and an increased understanding of the importance of apoptosis in the development and 

progression of cancer have provided the impetus for the development of apoptosis-

targeted therapies (Nagle et al. 2004). Thyrsiferyl 23-acetate, is a cyclic ether that 

contains a squalene carbon skeleton. Thyrsiferyl 23-acetate was isolated as a potent 

cytotoxin (ED50 of 0.3 ng/mL against P388 cells) from the marine red alga Laurencia 

obtusa collected in Japan (Suzuki et al. 1985). In serum-deprived Jurkat cells, thyrsiferyl 

23-acetate (10 μM) induced chromatin condensation and DNA fragmentation, hallmarks 

of apoptosis. Although thyrsiferyl 23-acetate has been shown to selectively inhibit 

serine/threonine phosphoprotein phosphatase 2A (PP2A), its apoptotic activity is not 

dependent on the inhibition of PP2A (Matsuzawa et al. 1999). 

 Multidrug resistance is one of the main causes for the failure of chemotherapeutic 

cancer treatments. Multidrug resistance was first described by Biedler & Riehm (1970), 

based on investigations in resistant cell lines derived from a Chinese hamster lung tissue-

derived cell line (DC-3F) and a Chinese hamster fibroblastic cell line (CLM-7). The 170 

kD surface glycoprotein P-glycoprotein membrane transporter acts as an ATP-dependent 

drug efflux pump that actively removes a variety of structurally diverse xenobiotics and 

natural product-based drugs with different cellular targets and mechanisms of action 

(Juliano & Ling 1976). A novel marine terpenoid, dehydrothyrsiferol isolated from a 

Canarian red alga, Laurencia viridis showed growth inhibition in oral squamous 
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carcinoma cells with S-phase arrest but no apoptosis (Pec et al. 1998). The IC50 values of 

dehydrothyrsiferol against the P-glycoprotein overexpressing multidrug resistant KB-8-5 

cells was about 2.6-times greater in the non-resistant KB-3-1 cells relative to the resistant 

KB-8-5 cells. Studies conducted in a fluorescence-based efflux system measuring the 

interference of a test compound with MRP1-mediated drug extrusion suggested that 

dehydrothyrsiferol did not inhibit MRP1-mediated drug transport (Pec et al. 2002).  

 Hormone unresponsive breast cancer is associated with poorer prognosis than 

hormone receptor expressing malign, mammary tumours. Estrogen-negative breast 

cancer cells were more sensitive to dehydrothyrsiferol than the receptor-positive 

counterparts and induction of apoptosis might be transduced through more than one 

effector pathway. Initial studies suggested that dehydrothyrsiferol may modulate multi-

drug resistance, but modulation of these proteins has subsequently shown not to be the 

case (Pec et al. 1998). Also dehydrothyrsiferol has significantly reduced the adhesion of 

breast cancer cells through the very late activation antigen integrins α2β1 and α5β1 by 

apoptosis, when studied on low amounts of extracellular matrix. Since the activation state 

of integrins is recognized as an essential factor in metastasis formation, the action of 

dehydrothyrsiferol to regulate integrin affinity may be a potential therapeutic strategy in 

cancer therapy (Pec et al. 2007) 

  

1.8 Need for the Study 

 Marine organisms constitute an important source of novel molecules for new drug 

discovery and drug development research of which 25% are from algae. Seaweeds have 

a distinct evolution on their biosynthetic pathways that frequently yield complex molecules 

with no counterparts in the terrestrial environment. Seaweeds produce distinct secondary 

metabolites that have novel structures with pronounced biological activity and 

pharmacology. The study of such chemicals therefore is promising. High throughput 

screening of marine metabolites for a given drug target can be achieved only if natural 
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compounds are available as a database. There are numerous reports of compounds 

derived from macroalgae with a broad range of biological activities but an exclusive 

database for the same is a requisite. Creating a database of natural products and sharing 

it with huge scientific community facilitates the understanding of basic mechanism of 

compounds and can reduce the timeline in drug discovery. The potential applications of 

having databases are for finding if a naturally occurring compound inhibits cellular 

proliferation. A search of the database for chemically similar compounds may reveal that 

a similar compound binds a protein known to be involved in regulation of the cell cycle 

thus making elucidation of the mechanism of a biological effector molecule easier. 

Development of chemical database for marine algae in particular cytotoxic compounds 

would pave a way for increasing the utilization of seaweeds in biomedical and 

pharmaceutical industry if the biological activities of marine algal compounds are indexed 

in the database.  

 Secondly, although computational methods are well established in drug discovery 

and molecular design their application in the field of natural products is still in its infancy 

and more specifically to marine derived drugs. Computer assisted approaches such as 

virtually screening, pharmacophore modelling are necessary to assess the druggability of 

marine derived bioactive compounds. This can potentially save research from pursing 

wrong leads. The investment of time and resources for more promising novel agents will 

allow the shortening of bench to bedside time considerably using in silico techniques. 

Hence, the present research work is necessary to evolve predictive models to study the 

structure-activity relationship of already identified cytotoxic compounds of marine algal 

origin. The use of the database as regression models to predict activity is also another 

application. 

 Offlate drug discovery for non-communicable disease such as cancer and 

metabolic disorders is highly warrented due to the high incidence, disease burden and 

economic burden globally. As discussed earlier there are numerous targets which play a 
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vital role in cancer pharmacology such as Cyclin-dependent kinase inhibitors, Telomerase 

inhibitors, Proapoptotic BH3 mimetics etc (Figure 1.1).  Identifying novel inhibitors for 

specific molecular targets by structure-based virtual screening would aid in the 

development of drugs from the ocean in an easier and faster manner. Hence, the present 

study is highly warrented in identifying specific drugs as anticancer agents to combat this 

killer disease in a versatile manner.  

 

1.9 Objectives of the Study 

 Based on the specific need of the study the following objectives are envisaged in 

the present research work. 

 To create a publically accessible database of marine algal compounds and 

share organized information on their biological activity available in the 

literature. 

 To study structure activity relationship of seaweed cytotoxic compounds with 

available experimental data against different cancer cell lines and build 

predictive models. 

 To discover novel potent protein kinase B inhibitor from marine algal 

compounds by structure-based virtual screening and aid in the development of 

drugs from the sea. 

 

1.10 Scope of the Study 

 The unprecedented population, prolific industrial expansion and urbanization have 

attracted human attention for ocean exploitation. This has developed interest in marine 

organisms as potential sources of pharmaceutical agents in the recent past. Despite the 

current interest in bioactive compounds of marine origin, our knowledge is limited 

because of the short history of this area of research. Moreover, the difficulties associated 

with the collection and isolation of marine plants compared to terrestrial plants. While 
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processing of marine plants for pharmacological purposes is hectic on one side; drug 

discovery and development is a cost and time intensive process involving many 

considerations from preclinical to clinical research before it enters the market. 

Chemoinformatics which involves development of informative databases useful for 

computer aided drug design provides valuable insights in the experimental studies before 

expensive preclinical and clinical research is done. The involvement of virtual screening 

saves to expedite as well as economize the modern day drug discovery process. 

 The development of Seaweed Metabolite Database (SWMD) in the present study 

has identified 1055 marine algal compounds which are subjected to virtual screening 

based on its cytotoxic properties. Cytotoxic potential of a natural product is generally a 

reliable molecule to exhibit anticancer activity. In the present scenario, global burden due 

to cancer is increasing and identifying a potent anticancer molecule of marine origin is a 

worthy exploitation.  The study of molecular fingerprints of bioactive molecules by ligand 

based virtual screening using QSAR analysis revealed descriptors essential for the 

cytotoxic actitvity of the seaweed compounds. Moreover, identifying specific molecules as 

PKB inhibitors amoung the metabolites tested in the present study further pays off for 

further experimentation before entering into the clinics. Hence, similar work using 

chemoinformatics with other targets would allow drug discovery and development 

process to proceed in a quicker and cost effective manner for diseases such as cancer 

which afflict the human population at large in the recent past. 
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Chapter 2 

CHEMOINFORMATICS DATABASE OF MARINE ALGAE 

2.1 Introduction 

 Marine organisms are potentially prolific sources of highly bioactive secondary 

metabolites that might represent useful leads in the development of new pharmaceutical 

agents. Marine algae produce a wide variety of remarkable natural compounds, usually 

referred to as secondary metabolites because they are not involved in the basic 

machinery of life. Although these molecules often contribute to only a very small fraction 

of the organisms total biomass, the contribution of these compounds to survival may 

sometimes be comparable to metabolites resulting from the primary metabolism (Cabrita, 

Vale & Rauter 2010). Both secondary and primary metabolisms have been studied as a 

prelude to future rational economic exploitation. The secondary metabolism is of 

restricted distribution, while the primary metabolism furnishes intermediates for the 

synthesis of essential macromolecules (Figure 2.1). Although chemical research on the 

algal products is very active, biosynthetic studies have been few and mainly concerned 

with secondary metabolism, which present a high structural diversity, due to modifications 

and combinations of reactions from the primary metabolic pathways (Cardozo et al. 

2007).   

 Marine algae are one of the richest sources of structurally diverse natural 

products. In recent years, an increasing number of novel compounds have been isolated 

from marine algae and many of them have been reported to possess interesting biological 

activities (El Gamal 2010). The marine natural products are divided into seven classes 

based on their chemical structure: terpenoids, steroids (including steroidal saponins), 

alkaloids, ethers (including ketals), phenols (including quinones), strigolactones and 

peptides (Hu et al. 2011). Most species of red, brown and green algae have been utilized 

on an industrial scale for one hundred years, which  indicates  that  the  novel compounds  
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Figure 2.1: Main pathways of some secondary & primary metabolites biosynthesis. 
 

 
 

Mt, mitochondria; Chl, chloroplasts; ER, endoplasmic reticulum; AACT, acetoacetyl-CoA thiolase; 

HMGS, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase; HMGR, 3-hydroxy-3-

methylglutaryl-CoA reductase; MVA, mevalonate; MK, mevalonate kinase; MVAP, Mevalonate-5P; 

PMK, phosphomevalonate kinase; MVAPP, mevalonate-5PP; MPDC, diphosphomevalonate 

decarboxylase; GA-3P, D-glyceraldehyde 3-phosphate; DXS, 1-deoxy-D-xylulose-5-phosphate 

(DXP) synthase; DXR, DXP reductoisomerase; MEP, 2-C-methyl-D-erythritol 4-phosphate; MCT, 

MEP cytidyltransferase; CDP-ME, 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol; CMK, CDP-

ME kinase; CDP-ME2P, 2-Phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol; MCS, 2-C-

methyl-D-erythritol 2,4-cyclodiphosphate (ME-2,4cPP) synthase; HDS, 1-hydroxy-2-methyl-2-

butenyl 4-diphosphate (HMBPP) synthase; HDR, HMBPP reductase; IPPI, isopentenyl 

diphosphate (IPP,C5) Delta-isomerase; DMAPP (C5), dimethylallyl diphosphate; GPS, geranyl 

diphosphate (GPP,C10) synthase; FPS, farnesyl diphosphate (FPP,C15) synthase; GGPS, 

geranylgeranyl diphosphate (GGPP,C20) synthase; OPS, oligoprenyl diphosphate (HOPP, C25-

C45) synthase; SPS, solanesyl diphosphate (SPP,C45) synthase; PPS, polyprenyl diphosphate 

(PPP,C50) synthase; SQS, squalene synthase; PSY, phytoene synthase; IPT, isopentenyl 

transferase; SS, sesquiterpenoid synthase; MS, monoterpenoid synthase; DS, diterpenoid 

synthase; HPT, homogentisate phytyl transferase; HST, homogentisate solanesyl transferase; 

DHNAPT, 1,4-dihydroxy-2-naphtoate phytyl transferase; HBPT, 4-hydroxybenzoate 

polyprenyltransferase; GGR, geranylgeranyl reductase; CHS, chlorophyll synthase (Vranová et al. 

2012).  
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from marine algae are more suitable as potential drugs. The study of such chemicals 

therefore is promising.  

 Marine algae produce a cocktail of halogenated secondary metabolites, reflecting 

the availability of chloride and bromide ions in seawater. Interestingly, bromide is more 

frequently used by algae for organohalogen production, although chlorine occurs in 

higher concentrations than bromine in seawater (Table 2.1). They exhibit structures from 

acyclic entities with a linear chain to complex polycyclic molecules. The prevalence of 

halogens is not similar in marine algae: chlorine and bromine appear to be the main 

halogens used to increase biological activity of secondary metabolites, whereas iodine 

and fluorine remain quite unusual within the chemical structures (Neumann, Fujimori & 

Walsh 2008). However, some orders of brown algae such as Laminariales accumulate 

and use iodine for halogenation processes. For example, the kelp Laminaria digitata 

accumulates iodine to more than 30,000 times the concentration found in seawater, 

representing an average content of 1% of dry weight. In fact, iodination is more frequent 

in brown algae than in red and green algae metabolites (Küpper et al. 1998). As a result, 

only less than 1% of secondary metabolites from brown algae contain bromine or chlorine 

in contrast with as much as 90% and 7% of red and green algal compounds, respectively. 

The most notable producers of the halogenated compounds belong to the genus 

Laurencia (Rhodophyta). The compounds are predominantly derivates of sesquiterpenes 

which are widespread in this genus and might be a useful taxonomical marker.  

 The cataloguing of marine chemicals is a fundamental aspect for bioprospecting. 

High throughput screening of marine metabolites for a given drug target can be achieved 

only if natural compounds are available as a database. Creating a database of natural 

products and sharing it with the huge scientific community facilitates the understanding of 

basic mechanism of compounds and can reduce the timeline in drug discovery. A publicly 

accessible database that provides comprehensive information about these compounds is 

therefore helpful to the relevant communities. 
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Table 2.1: Selected seaweed compounds & its activity 

Genus Compound Type Biological activity 

Laurencia 

Sesquiterpenes, diterpenes, 

triterpenes, acetogenins, fatty 

acids & brominated indoles 

Antimicrobial 

Cytotoxic 

Constantinea 

Farlowia 

Ptilota  

Eicosanoids Antimicrobial 

Gracilaria Eicosanoids Antihypertensive 

Hormothamnion  Styrylchromones Cytotoxic 

Plocamium, 

Chondrococcus  Ochtodes 
Polyhalogenated monoterpenes 

Antimicrobial 

Antitubercular 

Anticancer 

Cystophora Phlorotannins Bactericidal 

Bonnemaisonia nootkana 

Bonnemaisonia hamifera 

Trailliella intricate 

Brominated fatty acids Antitumor 

  

 

2.2 Structure and Design of the Database 

 A publicly accessible database that provides comprehensive information about 

marine algal metabolites with its physio-chemical properties and biological activity would 

therefore be helpful in the development of drugs from the sea. An attempt was made to 

achieve this goal; wherein Seaweed Metabolite Database (SWMD) was hosted in the 

public domain and accessible at www.swmd.co.in.  The database was done in MySQL 

5.1.36, an object-relational database management system, which works at the backend 

and the web interface was built in PHP 5.3.0, HTML and JavaScript as the front end. 

SWMD was built on Apache HTTP server with MySQL server and PHP, HTML and 

JavaScript, as these are platform-independent and are open-source software/technology. 

The flowchart of the structure of database and its design is depicted in Figure 2.2. 
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 To identify the naturally occurring compounds in marine algae, a text mining of the 

relevant literature was done manually. A total of 39 journals pertaining to marine algae 

and compound structure were referred, resulting in a collection of 187 articles published 

since 1967 (Figure 2.3). The journals that have contributed significantly in the creation of 

the database include ‘Journal of Natural Products’, ‘Phytochemistry’, ‘Tetrahedron’, 

‘Tetrahedron Letters’ and ‘Natural Product Research’, to name a few (Figure 2.4). The full 

text of each article was analysed to catalogue information like compound name, 

geographical origin, extraction method, information pertaining to its biological activity - 

anticancer, antibacterial, antimalarial, antioxidant, etc. The chemical structures of the 

molecules were drawn and the chemical descriptors were calculated using Marvinsketch 

(Csizmadia 2000) and Chemsketch (Spessard 1998) respectively. For molecular 

visualization, the user needs the free Chime-Plugin from MDL (available for Windows, 

SGI & Mac) or the Java2 Runtime Environment. Lipophilicity or LogP is the logarithm of 

the ratio of the concentrations of the un-ionized solute in the solvents, which is a measure 

to assess the druglikeness of a given molecule. LogP was predicted using ALOGPS 2.1 

program (Tetko & Tanchuk 2002). 

 SWMD record for each entry provides the following information in seven divisions 

(a) general information contains all the basic information for a particular compound like its 

name, SWMD ID (unique), molecular formula, molecular weight, monoisotopic mass; (b) 

external links contains accession number of the compound in PubChem and Chemspider 

chemical databases (c) seaweed information that contains the binomial name of the 

algae, the place of algal collection in geographical origin and the extraction method; (d) in 

biological activity section that contains anticancer activity information along with inhibitory 

values against various cancer cell lines, antibacterial activity along with minimum 

inhibitory concentration (MIC) for various bacteria, antimalarial and antioxidant activity; (e) 

structure information contains the International Union of Pure and Applied Chemistry 

(IUPAC), IUPAC International Chemical Identifier (InChI) and Simplified Molecular Input 
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Line Entry System (SMILES) notations along with a schematic view of compound and 

atomic coordinates in MOL and PDB format which can be downloaded for 3D molecular 

visualization; (f) predicted properties contains information about Lipinski’s rule of five and 

topological properties; (g) references contains the citation of the research article and its 

PubMed ID (Figure 2.5). 

 

Figure 2.2: Flowchart of methodology adopted for creation of database 

 

 
 

  

Reference of the published compound is citied with PubMed ID 

Checked for availability of the compound in PubChem and ChemSpider and linked 

Predicted properties of the compound calculated 

Biological activity of the compound recorded if available 

Catalogue the compound structure information  

Assign Accession number and deduce  molecular properties  

Structure of compound drawn using Marvinsketch 

Retrieve information of seaweed and its secondary metabolites 

Construction of relational database using MySQL, PHP, HTML 

Literature text mining for compounds from marine algae 
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Figure 2.3: Year-wise distribution of literature in SWMD 

 
 

 

 

Figure 2.4: Top 15 Journals referred in SWMD 
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Figure 2.5: The architecture of SWMD database 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Seaweed Metabolite Database SWMD  

SEARCH 
 Accession Number – RL452, BS049, GA007 

 Compound type – Thyrsiferol, Pacifigorgiol, 

 Binomial name – Portieria hornemannii, Laurencia 

 IUPAC name – 2,3,5-tribromo-1-methyl-1H-indole 

 SMILES notation – Brc1cc2c(cc1)n(C)c(Br)c2Br 

 InChI – InChI=1/C9H6Br3N/c1-13-7-3-2-5(10)4)8(11)9(13)12/h2-4H,1H3 

 Query can be full name or any part of the name 

 Wild characters of '%' and '_' are supported in text field 

 

General Information 

Accession Number 

Compound name 

Molecular Formula 

Molecular Weight  

Monoisotopic Mass  

External Links 

PubChem Compound ID 

ChemSpider ID 

Seaweed Information 

Binomial name 

Geographical Origin 

Extraction 

Biological Activity 

Cytotoxic - IC50 

Antibacterial - MIC 

Structure Information 

2D Structure 

IUPAC name 

SMILES notation 

InChI 

MDL Mol file 

PDB file 

 
Reference 

Citation 

PubMed ID 

 

Predicted Properties 

ALOGPS 

Lipinski’s rule of 5  

Number of H-Bond Donor 

Number of H-Bond Acceptor 

Number of Rotating Bonds 

Molar Refractivity  

Polar Surface Area  

Van der Waals surface area  

TOTAL 
COMPOUNDS 

1055 
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Figure 2.6: Homepage of SWMD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Result page of SWMD  
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2.3 Features of the Database 

 The data in SWMD can be easily accessed in a variety of ways (Figure 2.5). 

Users can query the database by using a simple text search tool that provides various 

options for searching like Accession Number, Compound type, Seaweed Binomial name, 

IUPAC name, SMILES notation and InChI. The search is case insensitive. In a query, a 

user can specify full name or any part of the name in a text field. Wild characters of '%' 

and '_' are supported in the text field. The search results are displayed of compound-

centric information in a new page (Figure 2.7).  

 The database is unique in providing comprehensive information of compounds 

from seaweeds via 27 descriptive fields. Each entry in the database is categorized into 

seven sections namely; general information, external links, seaweed information, 

biological activity, predicted properties & bibliographic references. The compound’s 

unique SWMD accession number is created viz. XY123 where X represents the 

Macroalgae - Brown, Green and Red by B, G and R respectively and Y represent the first 

letter of the genus. The records are cross-linked to other small molecule databases like 

PubChem and Chemspider.  

 The source of the compound; marine algal binomial name, the geographical 

location of where the seaweed was collected and the extraction solvent employed were 

curated from original  research articles which is unique in this database as the 

geographical location of the algae varies, so does the secondary metabolites 

synthesized. The information of each compound is given in IUPAC, SMILES notation and 

InChI apart from the schematic sketch of the compound. The structure information along 

with atomic coordinates can be downloaded in MOL and PDB format for 3D molecular 

visualization. Also in the download page, all the 1055 compounds 3D structures are 

available in zipped format for download which will aid in docking studies. The chemical 

descriptors of the compounds are displayed to predicted the Lipinski’s rule of five and 
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lead likeliness compliance. Citations relevant to the respective compounds with PubMed 

ID are other additional features of the records. 

 
Table 2.2: Biological activity of compounds in the database  

Compound Biological activity 

Laurinterol 

Cytotoxic - K562(IC50=128.3µM); MCF7(IC50=67.2µM); 

PC3(IC50=76.6µM); HeLa(IC50=83.9µM); A431(IC50=74.6µM); 

CHO(IC50=165.8µM) 

(+)-α-Isobromo-

cuparene 

Cytotoxic - HT29(IC50=130.4µM); MCF7(IC50=177.6µM); 

PC3(IC50=191.2µM); HeLa(IC50=204.3µM); A431(IC50=198.4µM) 

Caespitenone 
Cytotoxic - HT29(IC50=18.9µM); MCF7(IC50=19.7µM); 

A431(IC50=21.6µM) 

Lanosol 
Antioxidant Activity - DPPH radical scavenging(IC 50 =42.33µM); 

ABTS radical scavenging(TEAC=1.56mM) 

(8R*)-8-bromo-

10-epi-β-

snyderol 

Antimalarial - Plasmodium falciparum D6 clones(IC50=2700ng/mL); 

W2 clones(IC50=4000ng/mL) 

Majapolene B 
Antibacterial - Chromobacterium violaceum(MIC=20µg/disc); Proteus 

mirabilis(MIC=20µg/disc); Proteus vulgaris(MIC=20µg/disc) 

Laurenditerpenol 

Inhibits hypoxia-activated (hypoxia-inducible factor-1) HIF-1 

(IC50=0.4µM) and hypoxia-induced VEGF (a potent angiogenic 

factor) in T47D cells 

 
 
Figure 2.8: Comparison with other databases
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Figure 2.9: Distribution of Seaweed compounds in the database 
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Table 2.3: Marine algae listed in SWMD and number of entries  
 

Brown Algae Red Algae 

Bifurcaria bifurcata 12 Boergeseniella fruticulosa 1 Laurencia obtusa 95 

Cutleria multifida 1 Callophycus oppositifolius 1 Laurencia okamurai 16 

Cystophora fibrosa 14 Callophycus serratus 10 Laurencia omaezakiana 4 

Cystoseira mediterranea 1 Corallina granifera 1 Laurencia paniculata 1 

Cystoseira sp. 1 Delisea pulchra 29 Laurencia pannosa 3 

Dictoyota dichotoma 9 Galaxaura filamentosa 1 Laurencia papillosa 1 

Dictyopteris undulata 6 Galaxaura marginata 14 Laurencia perforata 3 

Dictyota bartayresiana 13 Gelidium crinale 1 Laurencia saitoi 25 

Dictyota bartayresii 1 Gracilaria asiatica 3 Laurencia scoparia 19 

Dictyota ciliolata 6 Halymenia floresii 1 Laurencia similis 32 

Dictyota dichotoma 12 Hypnea musciformis 1 Laurencia snyderiae 2 

Dictyota divaricata 4 Jania rubens 8 Laurencia sp. 42 

Dictyota linearis 4 Laurencia aldingensis 4 Laurencia subopposita 12 

Dictyota menstrualis 2 Laurencia brongniartii 5 Laurencia thyrsifera 1 

Dictyota sp. 12 Laurencia caduciramulosa 5 Laurencia tristicha 14 

Dilophus fasciola 6 Laurencia calliclada 1 Laurencia undulata 1 

Dilophus spiralis 6 Laurencia cartilaginea 10 Laurencia venusta 3 

Ecklonia cava 7 Laurencia catarinensis 14 Laurencia viridis 21 

Ecklonia stolonifera 9 Laurencia claviformis 1 Laurencia yonaguniensis 2 

Glossophora Kunti 1 Laurencia composita 12 Ochtodes secundiramea 5 

Leathesia nana 20 Laurencia decumbens 14 Osmundaria colensoi 6 

Padina pavonia 3 Laurencia dendroidea 1 Phyllophora crispa 1 

Sargassum carpophyllum 2 Laurencia flexilis 8 Plocamium cartilagineum 12 

Sargassum fallax 11 Laurencia glandulifera 12 Plocamium corallorhiza 6 

Sargassum micracanthum 5 Laurencia intermedia 3 Plocamium cornutum 5 

Sargassum tortile 4 Laurencia intricata 5 Plocamium mertensii 6 

Sporochnus pedunculatus 1 Laurencia japonensis 8 Plocamium suhrii 7 

Sargassum sp. 4 Laurencia karlae 6 Polysiphonia lanosa 11 

Stypopodium flabelliforme 32 Laurencia luzonensis 21 Polysiphonia morrowii 1 

Stypopodium zonale 3 Laurencia majuscula 55 Portieria hornemannii 29 

Taonia atomaria 3 Laurencia mariannensis 21 Rhodomela confervoides 66 

Turbinaria conoides 9 Laurencia microcladia 25 Rhodomela larix 3 

Stoechospermum 
marginatum 

12 Laurencia nidifica 2 
Sphaerococcus 
coronopifolius 

9 

Undaria pinnatifida 6 Laurencia nipponica 12 
 

 

Zonariu toumefortii 4 
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Avrainvillea nigricans 12 

 
 

  
Codium fragile 2 

 
 

  
Cymopolia barbata 4 

    Enteromorpha compressa 1 

    Ulva fasciata 10 
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Figure 2.10: Distribution of Lipinski’s rule of five violations 

 

 

 

Figure 2.11: Distribution of Molecular Mass 

 

 

  

690 

310 

38 15 2 
0 

100 

200 

300 

400 

500 

600 

700 

800 

0 1 2 3 4 

N
u

m
b

e
r 

o
f 

c
o

m
p

o
u

n
d

s
 

Lipinski’s rule of five violations 

0 
33 

252 

406 

233 

65 
49 

11 5 1 
0 

100 

200 

300 

400 

500 

N
u

m
b

e
r 

o
f 

c
o

m
p

o
u

n
d

s
 

Molecular Mass range (Dalton) 



 

Anticancer potential of marine algae - a chemoinformatics approach  Page | 43 

 

 

Figure 2.12: Distribution of Hydrogen Donor 

 

 

 

Figure 2.13: Distribution of LogP 
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Figure 2.14: Distribution of Hydrogen Acceptor 

 

 

 

Figure 2.15: Distribution of Molar Refractivity  
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Figure 2.16: Distribution of freely rotating bonds 

 

 

 

Figure 2.17: Distribution of Polar Surface Area 
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2.4 Results and Discussion 

 During the past decade, a number of databases providing bioactivity information 

and data mining tools have been made available online. Among the well known 

resources, ChemSpider (Pence & Williams 2010), PubChem (Wang et al. 2009) and 

SuperNatural (Dunkel et al. 2006) focus on collecting and curating bioactivity data from 

literature. ChemSpider is a free, online chemical database offering access to physical and 

chemical properties, molecular structure, spectral data, synthetic methods, safety 

information, and nomenclature for almost 25 million unique chemical compounds sourced 

and linked to almost 400 separate data sources on the web. PubChem is 

a public repository for biological properties of small molecules and contains biological test 

results for more than 700,000 compounds with bioactivity analysis tools. SuperNatural 

database is a resource containing 3D structures and conformers of 45,917 natural 

compounds, derivatives and analogues purchasable from different suppliers. Thus, the 

SuperNatural database is a general natural compound database of any origin without 

their corresponding biological activity, whereas the other two databases, that is, 

ChemSpider and PubChem have concentrated more on compiling chemical information 

for the bioactive principle. 

 SWMD is the first database that has been compiled with published experimental 

information on natural compounds found in marine algae only and their biological activity 

with special emphasis on anticancer activity. SWMD is unique in providing in vitro 

bioactivities of these compounds against large number of cancer cell lines (IC50) as well 

as information of antibacterial, antimalarial and antioxidant activities, wherein for more 

than 300 compounds (~30%) biological activities has been recorded (Table 2.2). Even in 

terms of number of compounds, the overlap between these existing repositories and 

SWMD is small. SWMD has 1055 compound entries, of which 189 (18%), 575 (55%) and 

957 (91%) are not found in Chemspider, PubChem and SuperNatural data sets, 

respectively (Figure 2.8). Overall, there are as many as 187 compounds (18%) that are 
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not found in any of these databases. One of the reasons that the overlap between 

existing repositories and SWMD is small could be because of the reason that majority of 

entries in SWMD have been derived from literature published in recent years, that is, 71% 

of literature covered is post-2000 (Figure 2.3). Thus, availability of SWMD as a public 

resource would furnish additional information with respect to the geographical origin of 

marine algae and biological activity. Therefore, the present database will complement 

these existing databases in serving the scientific community. 

 The compound entries in SWMD are from green, red and brown algae with 29, 

780 and 246 records respectively (Figure 2.9). The database is regularly updated and 

marine algae presently listed in the database are shown in Table 2.3 along with the 

number of entries. Among macroalgae, significantly more rich in secondary metabolites 

appear the brown and red algae, with the latter being the top producers of halogenated 

metabolites. Red alga of the genus Laurencia has the highest number of compounds in 

the database with 542 entries. This database enables users to identify compounds 

isolated from a particular or across large number of seaweeds. For example, Laurinterol 

is produced by six species of Laurencia and RL021 has information of cytotoxic activity 

for seven cell lines. Similarly, the molecule, Loliolide is synthesized by 15 different 

species of marine algae, isolated from varied geographical locations.  

 Also, another advantage of this database will be that it would help in the process 

of drug discovery by providing researchers starting points for in-silico screening of natural 

compounds as well as make available building blocks or scaffolds to be selected for the 

design of novel drugs. Moreover, comparative analysis of molecular properties of 

synthetic, natural compounds and drugs has revealed the various distinctness features of 

natural compounds (Ertl, Roggo & Schuffenhauer 2008). Molecular properties important 

for a drug's pharmacokinetics in the human body is described by Lipinski's Rule, a rule of 

thumb to evaluate druglikeness, or determine if a chemical compound with a certain 

pharmacological or biological activity has properties that would make it a likely orally 
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active drug in humans. Lipinski's rule says that, in general, an orally active drug has no 

more than one violation of the following criteria; not more than 5 hydrogen bond donors, 

not more than 10 hydrogen bond acceptors, a molecular weight under 500 daltons and an 

octanol-water partition coefficient logP of less than 5 (Lipinski 2000). Of the 1055 marine 

algal compounds catalogued in the database, 618 (59%) are Lipinski compliant with the 

caveat that ALOGPS 2.1 program was used as a surrogate for LogP (Figure 2.10-17).  

 Current trends in drug discovery has shifted the focus to good quality leads to 

evaluate druglikeness better wherein ‘lead-like’ molecules, which have molecular weight 

between 150-350 daltons, LogP of less than 4, hydrogen bond donors not more than 3, 

and hydrogen bond acceptors not more than 6 (Schneider 2002; Oprea 2002).  229 

(22%) are ‘lead-like’ molecules in SWMD (Figure 2.10-17). For more desireable structure-

based virtual screening using docking programs, molecules are to be ‘fragment-like’ with 

LogP between − 2 and 3, molecular weight less than  250 daltons, hydrogen bond donors 

not more than 3, hydrogen bond acceptors not more than 6 and rotatable bonds not more 

than 3 (Verdonk et al. 2003). A total of 48 (4.5%) molecules are ‘fragment-like’ in the 

database that would pave way for virtual screening (Figure 2.10-17). Further, the 

database can be of particular use for developing robust scaffold based quantitative 

structure–activity relationship models for various cancer cell line-based models. 
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Chapter 3 

QSAR STUDY OF MARINE ALGAL COMPOUNDS 

3.1 Introduction 

 Drug discovery and development is a cost and time intensive process involving 

many considerations in molecular design, synthesis, testing and evaluation of drug effects 

ranging from local interactions at the molecular/cellular level to global effects on the 

organism and population. Only 20% of drug discovery projects are reported to lead to a 

clinical candidate and only 10% of the compounds that enter clinical development achieve 

registration (Kennedy 1997). The number of years to bring out a drug from conception to 

market is approximately 8-10 years, costing on an average US $1.2 billion to $1.4 billion 

and above per drug (Bharath, Manjula & Vijaychand 2011). Computer-aided drug design 

(CADD) provides valuable insights into experimental findings and mechanism of action, 

new suggestions for molecular structures to synthesize and can help make cost-effective 

decisions before expensive synthesis is started. Offlate, numerous compounds that were 

discovered and/or optimized using CADD methods have reached the level of clinical 

studies or have even gained US FDA approval (Talele, Khedkar & Rigby 2010).  

 Computational methods play a pivotal role in exploiting the structural and 

functional information to understand specific molecular recognition events of 

the target macromolecule with candidate hits leading ultimately to the design of 

improved leads for the target. The advent of global networks of genomic, proteomic and 

metabolomic endeavors is ushering in an increasing number of novel and clinically 

important targets for screening. The goal of drug design is to select a target in the 

etiology of a disease and find one or more compounds which interacts with that target, 

and in doing so activates or blocks the given target (Drews 2000). Ideally, the resultant 

changes in target protein activity will go on to influence a series of reactions and lead to 

an improvement in the clinical outcome. The involvement of virtual screening serves to 

expedite as well as economize the modern day drug discovery process.  
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 Virtual screening or in silico screening is the computational search for molecules 

with desired biological activities in large computer databases of small molecules that do 

not even have to physically exist. Virtual screening has inherent advantage over 

traditional and even experimental high throughput screening (HTS) due to its massive 

parallel processing ability; millions of compounds per week can be tested. It can be 

divided into structure-based drug design and ligand-based drug design.  In Structure-

based drug design, information on the 3D structure and active sites of the target protein 

are obtained from X-ray crystallography, nuclear magnetic resonance, or 3D structure 

databases, and incorporated into a computer model wherein compounds binding to the 

target are designed. Frequently used techniques in this approach are docking and 

molecular dynamics simulation. In the former, potent ligands can be found by screening a 

molecule database with docking software; in the latter molecular dynamics simulation is 

used to determine how a molecule interacts with the target protein and other properties of 

the molecule itself, such as membrane permeability (Lee, Huang & Juan 2011) 

 In Ligand-based drug design, 3D structures of a target protein are not available; 

drug design is based on processes using the known ligands of a target protein. The 

screening compounds should be either ‘lead-like’ or ‘drug-like’ and have the potential to 

be orally available. Molecular similarity approaches, quantitative structure-activity 

relationships (QSAR) and pharmacophore models are frequently used methods in the 

ligand-based drug design process. By using the molecular fingerprints of known ligands, 

databases can be screened to find molecules with similar fingerprints. Common structural 

features of ligands can be found using pharmacophore modeling, which can then be used 

to screen for molecules with these features. To predict the activity of a novel molecule, 

models can be built with QSAR. While a pharmacophore model may only indicate the 

activity-conferring features of an active ligand, the relationship between chemical or 

physical properties of ligand and biological activity can be more fully explored using the 

QSAR model. Also QSAR has been instrumental in the development of various popular 
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drugs (Ooma 2000). Ligand-based search act as the first stage in structure based 

workflow. In addition, to open more opportunities for hit identification/optimization for a 

target of interest, it is very common to employ many different design methods (Liao et al. 

2011). 

 

3.2 Principles of QSAR Modeling 

 Quantitative Structure-Activity Relationship (QSAR) modeling provides an 

effective means for both exploring and exploiting the relationship between chemical 

structure and its biological action towards the development of novel drug candidates 

(Tropsha 2010). The concept of QSAR was introduced by Corwin Hansch and co-workers 

on pesticides (1962). The QSAR approach can be generally described as an application 

of data analysis methods and statistics to developing models that could accurately predict 

biological activities or properties of compounds based on their structures. In comparison 

with other methods for assessing toxicological endpoints, such as animal-based and in 

vitro methods, QSAR models are not only easy to apply, but are also efficient in terms of 

time and financial cost. In addition, the QSAR models sometimes contribute to the 

mechanistic understanding of the pharmacotoxicological effects being modelled. 

 The International Union of Pure and Applied Chemistry defines QSAR as follows: 

“Quantitative Structure–Activity Relationships (QSAR) are mathematical relationships 

linking chemical structure and pharmacological activity in a quantitative manner for a 

series of compounds. Methods which can be used in QSAR include various regression 

and pattern recognition techniques.” QSAR is often taken to be equivalent to 

chemometrics or multivariate statistical data analysis. It is sometimes used in a more 

limited sense as equivalent to Hansch analysis. 

 The most fundamental goal is to predict whether a given molecule will bind to a 

target and if so how strongly. QSAR attempts to find consistent relationship between 

biological activity and molecular properties, so that these “rules” can be used to evaluate 
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the activity of new compounds. There can be both qualitative SARs and quantitative 

SARs (QSAR), depending on the means used to describe the chemical structure and on 

the nature of the derived relationship. In QSAR analysis, quantitative descriptors are used 

to describe the chemical structure and the analysis results in a mathematical model 

describing the relationship between the chemical structure and biological activity. The 

process of QSAR modeling is summarized in Figure 3.1. QSAR is among the most 

practical tool used in analogue/ligand-based drug design and has been extensively 

reviewed for prediction of various properties like ADME (absorption, distribution, 

metabolism, and excretion), toxicity, carcinogenicity, retention time, stability and other 

physicochemical properties apart from the biological activity (Bohari, Srivastava & Sastry 

2011). The general form of a QSAR equation is P(i) = f (SDi ), where P(i) is a physical, 

chemical, or biological property of compound i, SDi is a vector of structural descriptors of 

i, and f is a mathematical function such as linear regression, partial least squares, artificial 

neural networks, or support vector machines. This theoretical method follows the axiom 

that the variance in the activities or physicochemical properties of chemical compounds is 

determined by the variance in their molecular structures (Katritzky et al. 2001). 

 

Figure 3.1: A flowchart showing the steps involved in predicting molecular 

properties or activities from molecular structures 
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Figure 3.2: Predictive QSAR modeling workflow 

 

  

  

 

 

 

 

 

 

 

 

 

  

 The main objective for the development of QSAR is development of predictive and 

robust QSAR, with specified chemical domain for prediction of activity of untested 

molecule. Secondly, QSAR acts as an informative tool by extracting significant pattern in 

descriptor related to measured biological activity leading to understanding of mechanism 

of the given biological activity, this could help in suggesting to design novel molecule with 

improved activity profile. To enable the development of reliable and predictive QSAR 

models a workflow is summarized in Figure 3.2, from data preparation to model 
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used in model development, and if they are too small, chance correlation and overfitting 

become major problems not allowing one to build truly predictive models. In case of 

continuous response activity the number of compounds in the training set should be at 

least 20 and about 10 compounds should be in each of the test and external evaluation 

sets, so the total minimum number of compounds should be no less than 40. In case of 

classification or category response activity, training set should contain at least about 10 

compounds of each class, and test and external evaluation sets should contain no less 

than five compounds for each class. Outliers in a dataset can be errors due to structure 

representation or biological activity and should be removed before proceeding with model 

development (Tropsha 2010). QSARs based on molecular descriptors can explain the 

situation in a better and more meaningful way (Bagchi, Mills & Basak 2007). As the 

number of molecular descriptors is huge as compared to a set of experimentally obtained 

biological data, and it exceeds the number of chemical compounds to a large extent, 

wherein statistical and machine learning techniques are useful when the number of 

independent variables greatly exceeds the number of observations and when the 

independent variables are highly intercorrelated. Statistical tools which are employed in 

QSAR for model optimization include multiple linear regression (MLR), principal 

component analysis (PCA) or partial least squares (PLS), artificial neural networks (ANN) 

and Genetic algorithms (GA). However, it is noteworthy that MLR is still one of the most 

widely used artificial intelligence techniques in QSAR studies. 

 

3.3 QSAR Methodologies 

 Cheminformatics study entails the calculation of chemical descriptors that are 

expected to accurately reflect intricate details of underlying chemical structures (Tropsha 

2010). Molecular descriptor can be defined as a numerical representation of chemical 

information encoded within a molecular structure via mathematical procedure. Types of 

QSAR are based on the dimensionality of molecular descriptor used. In 0D QSAR, the 
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descriptors are derived from the molecular formula e.g. molecular weight, number and 

type of the atoms etc. A substructure list representation of a molecule can be considered 

as a one-dimensional (1D) molecule representation and consist of a list of molecule 

fragments. 

 Molecular graph contain topological or two dimensional (2D) QSAR information of 

how the atoms are bounded in a molecule, both the type of bonding and the interaction of 

particular atoms. The molecular hydrophobicity (lipophilicity) is normally quantified as 

logP where P is the partition coefficient, a measure of differential solubility of a compound 

in two immiscible solvents.  The octanol/water coefficient, P, is the ratio of a neutral 

molecule concentration in 1-octanol to its concentration in water when the phases are at 

equilibrium (Kujawski et al. 2012). In toxicology, partitioning is critical to understand the 

tendency of chemical to cross biological membranes and 1-octanol properties are similar 

to those of natural membranes. Other descriptors are those related to steric effects, such 

as the molar refraction (MR) index, various parameters accounting for the shape of a 

compound and descriptors indicating the presence or absence of certain structural 

features. It should be noted, that even though some descriptors are based on 3-D 

coordinates, the method as a whole considers only the observed property and the 

descriptors, and hence is 2-D in nature. 

 2D QSAR use only zero-dimensional, one-dimensional, 2D, and 3D descriptors. 

3D descriptors for 2D QSAR can be calculated only from structures optimized by 

molecular mechanics and/or quantum chemical calculations. For example, 3D descriptors 

are: Randic molecular profiles, geometrical descriptors, radial distribution function, 3D-

molecule representation of structure based on electron diffraction, weighted holistic 

invariant molecular and geometry, topology, and atom-weights assembly descriptors. 

Further, any kind of surfaces (e.g., polar surface area) or volumes (e.g., molecular 

volume), or quantum chemical (e.g., ionisation potential, electronegativity and 

electrophilicity) are considered as descriptors (Todeschini & Consonni 2000).  
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 The 3D QSAR descriptors include molecular surface, molecular volume and other 

geometrical properties. Popular 3D QSAR methods are the comparative molecular field 

analysis (CoMFA), the comparative molecular similarity indices analysis (CoMSIA) and 

GRID (Bordás et al. 2003). The basic idea behind CoMFA is that the biological activity of 

molecules is related to its electrostatic and steric interactions. The molecules (ligands) 

that are being studied are aligned structurally on a 3D grid. Using a probe atom, 

electrostatic and steric fields are determined at every point in the grid. CoMSIA, on the 

other hand, also takes into account hydrophobic parameters. GRID is similar to CoMFA 

and may also be used to determine the interaction energies between the probe and the 

ligand. In addition, GRID can also be used to calculate hydrogen bonding energies (Duch, 

Swaminathan & Meller 2007). The fact that the molecule is studied directly in three 

dimensions, rather than being mapped to two, allows for a clearer view of the interactions 

between the molecule and its target that play a role in the observed activity. However it 

does require accurate alignments and only considers a single conformation of a molecule. 

CoMFA and other 3D-QSAR methods have several shortcomings, e.g., in many cases, it 

is impossible to precisely define a pharmacophore model, and if a non-optimal alignment 

of ligands is applied, it may introduce errors in the QSAR model (Golbraikh & Tropsha 

2003). The 3D QSAR may be too computationally expensive to analyse large data sets. 

For example, alignment of the ligands takes a lot of time, conformational search must be 

done to find the best conformers, and they affect the final results very much. Sometimes 

an automated and unambiguous alignment of compounds is not achievable (Goodarzi, 

Dejaegher & Heyden 2012). 

 The 4D QSAR methodology is an extension of the 3D QSAR methodology 

developed by Hopfinger et al. (1997). In 4D QSAR, the fourth dimension represents an 

ensemble of conformations, orientations, or protonation states for each molecule (Vedani 

et al. 2000). This reduces the bias that may come from the ligand alignment, but requires 

identification of the most likely bioactive conformation and orientation (or protonation 
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state), frequently obtained using evolutionary algorithms. Similar to the CoMFA method, 

4D QSAR starts of by defining a set of grid points on which molecular properties will be 

evaluated. In addition to the grid points, the method performs conformational ensemble 

sampling and uses the information obtained to evaluate grid cell occupancies. These 

occupancies are then used to evaluate interaction pharmacophore elements (IPE’s). The 

IPE’s together with the molecular properties are then used to develop a predictive model. 

 The 5D QSAR carries this one step further, allowing for changes in the receptor 

binding pocket and ligand topology (Vedani & Dobler 2002). Adding solvation effects 

leads to 6D QSAR, which allows, in combination with flexible docking, for relatively 

accurate identification of the endocrine-disrupting potential associated with a drug 

candidate (Vedani, Dobler & Lill 2005). The type of chemical descriptors has much 

greater influence on the prediction performances of QSAR models than the nature of the 

model optimization techniques.  

 The differences in various QSAR methodologies can be understood in terms of 

the types of target property values, descriptors and optimization algorithms used to relate 

descriptors to the target properties and generate statistically significant models. Target 

properties (regarded as dependent variables in statistical data modeling sense) can be 

generally of three types: continuous (i.e., real values covering certain range, e.g., IC50 

values, or binding constants); categorical related, or rank-based (e.g., classes of rank 

ordered target properties covering certain range of values, e.g., classes of metabolic 

stability such as unstable, moderately stable, stable); and categorical unrelated (i.e., 

classes of target properties that do not relate to each other in any continuum, e.g., 

compounds that belong to different pharmacological classes). Since the choice of 

descriptor types as well as modeling techniques and model accuracy metrics is often 

dictated by the type of the target properties, in general the latter two types require 

classification modeling approaches whereas the former type of the target properties 
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allows using (multi)linear regression type modeling. The corresponding methods of data 

analysis are referred to as classification or continuous property QSAR. 

 The present work focuses on the 2D continuous property QSAR methodology 

and presents investigations carried out on certain steps of the model building process. 

Compared to the 3D and 4D methodologies described above, the 2D approach has a 

number of advantages. First, owing to the variety of molecular descriptors available, 

optimized coordinates are not always required. In fact, connectivity information (in the 

form of SMILES strings or an adjacency matrix) alone can be used to develop QSAR 

models. As a result models using these types of descriptors (termed topological 

descriptors) can be built rapidly for very large sets of molecules. However, these types of 

descriptors are in general quite abstract and so if the model is to be analyzed to extract 

information regarding structure-property trends, other, more physically meaningful 

descriptors will generally be required. Secondly, this approach avoids the alignment step 

and thus can be used in the absence of experimental information regarding the binding of 

a molecule to its target. 

 The downside to the 2D QSAR methodology is that it does not provide a detailed 

answer to a number of questions regarding a molecule’s activity. That is, by representing 

structural information in the form of descriptors, aspects of a molecules activity such as its 

absorption properties or degradability are hidden by a layer of abstraction or not 

addressed at all. Thus a molecule might be observed to have low activity. A 2D model 

may not be able to indicate whether this is due to its inability to bind to the target or 

whether this is due to its inability to cross the cell membrane. The point is that, in a 2D 

QSAR model, a lot of information about various aspects of a molecule’s activity are 

combined together and are not always individually apparent. Though interpretation 

methods for linear QSAR models exist, they are obviously restricted to the information 

encoded by the descriptors in the model. This means that though 2D QSAR models are 

certainly very useful, especially for screening purposes, they should be used in 
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conjunction with other types of models to fully understand the role that various structural 

features play in determining the activity of a molecule. 

 2D QSAR models can also be divided into two distinct groups, namely, qualitative 

and quantitative models. The former type of model, also known as classificatory models 

consider a categorical dependent variable. That is, the observed property for each 

observation is represented by a label, such as toxic or non-toxic. Thus, if a dataset is 

available for which an assay has been carried out indicating whether a given molecule is 

carcinogenic or not, a 2D qualitative model can be built that will predict whether a 

molecule, not belonging to the set, is carcinogenic or not. These types of models are not 

restricted to yes/no problems and datasets with multiple classes (say, active, moderately 

active and inactive) can be modelled. The second type of 2D QSAR models are referred 

to as quantitative (or regression) models. The function of these types of models is to 

predict a numerical value for a property, for example, boiling points or IC50 values. At the 

same time it should be pointed out that even when the observed property for a dataset is 

numeric in nature, it can be studied using qualitative models. This is generally achieved 

by selecting a break point in the range of the observed values and placing molecules 

whose property is above the break point in one class and the remaining molecules in 

another class. With these class assignments, a classificatory model can then be built. 

This thesis focuses on the development of regression models. 

 The process of QSAR model development can be generally divided into three 

stages: data preparation, data analysis, and model validation. The first stage includes the 

selection of a molecular dataset, calculation of molecular descriptors, and the choice of 

the QSAR approach in terms of the statistical methods of data analysis and correlation. 

The second part of QSAR modeling procedure involves building models that correlate 

descriptor values with those of biological activity. Many different algorithms and computer 

software are available for this purpose. Most are based on linear (multiple linear 

regression (MLR) with variable selection, partial least squares (PLS), etc) as well as non-
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linear (e.g., k-nearest neighbors, artificial neural networks) methods. In all approaches, 

descriptors represent independent variables, and biological activities serve as dependent 

variables. The final part of QSAR model development is the model validation, when the 

predictive power of the model and hence its ability to reproduce biological activities of 

untested compounds is established. Most of the QSAR modeling methods implement the 

leave-one-out (LOO) (or leave-some-out) cross-validation procedure. The outcome of this 

procedure is cross-validated R2 (q2), which is commonly regarded as an ultimate criterion 

of both robustness and predictive ability of the model (Golbraikh et al. 2003). 

 

3.4 Selection of Molecular Dataset  

 Computational methods aid in not only the design and interpretation of 

hypothesis-driven experiments in the field of cancer research but also in the rapid 

generation of new hypotheses. QSAR has widely been applied for the activity prediction 

of diverse series of biological and/or chemical compounds including anticancer drugs 

(Liao et al. 2008). A number of quantum chemical descriptors (such as charge, molecular 

orbital, dipole moment, etc.) and molecular property descriptors (such as steric, 

hydrophobic coefficient, etc.) have been successfully applied to establish 2D QSAR 

models for predicting activities of anticancer compounds (Chen et al. 2007; Zhang et al. 

2007).  

 For a cancer type, there are a number of cell lines available, on which in-vitro 

evaluation of biological activity can be performed, but the results of this evaluation varies 

based on the cell line employed for assay. Therefore, it becomes difficult for 

computational chemist to choose experimental data from a pool of available biological 

activity for a single scaffold type, so as to proceed for analogue-based design. Although 

in-vitro assay for anticancer activity is available against many different cell lines, most of 

the computational studies are carried out targeting any one particular cell line, which may 

not be a good approach to rely upon. The study considering all the available experimental 
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data to build predictive models, will guide medicinal chemist to more reliably design new 

and potent compounds (Bohari, Srivastava & Sastry 2011). Also, analyzing the obtained 

descriptors for models against all the cell lines, may suggest the importance of a 

particular class of descriptor in modeling anticancer activity against a cancer type. Such 

statistically robust and extensive QSAR studies against many different cancer cell lines 

are warranted.  

 Hence, a comprehensive QSAR modeling studies was performed in the present 

study using the compounds in SWMD that have cytotoxic activity.  SWMD which has 

1055 entries, 245 compounds (23%) has documented anticancer activity against 43 

different cell lines (Table 3.1). As suggested by Tropsha (2010) that in case of continuous 

response variable (activity) the number of compounds in the training set should be at 

least 20, and about 10 compounds should be in each of the test and external evaluation 

sets, so the total minimum number of compounds should be no less than 40. The dataset 

taken for the study has minimum of 40 compounds for a particular cell line. So the dataset 

consists of 157 compounds having cytotoxic activity against six different cancer cell lines 

namely MCF-7 (Human breast adenocarcinoma), A431 (Human epithelial carcinoma), 

HeLa (Human cervical adenocarcinoma), HT-29 (Human colon adenocarcinoma grade II), 

P388 (Murine leukemia) and A549 (Human lung epithelial adenocarcinoma) cells, each 

having more than 40 compounds. The dataset consists of chemical diverse compounds 

which include sesquiterpenes, diterpenes, triterpenes, sterol and acetogenins that are 

usually characterized by the presence of one or more halogen atoms in their structures 

(Figure 3.3). The structure of all the 157 compounds and their experimental cytotoxic 

activity against six cell lines listed in SWMD along with its accession numbers has been 

shown in Table 3.2.  
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Table 3.1: Cell lines against which their anticancer activity was reported in SWMD 

along with the number of molecules in each cell lines 

S. No. Cell Lines Cancer Type # of Compounds 

1 A549 Human lung epithelial adenocarcinoma 72 

2 MCF7 Human breast adenocarcinoma 65 

3 HT29 Human colon adenocarcinoma grade II 62 

4 P388 Murine leukemia 54 

5 HeLa Human cervical adenocarcinoma 50 

6 A431 Human epithelial carcinoma 41 

7 KB Human oral carcinoma 34 

8 PC3 Human prostate cancer 29 

9 K562 Human erythromyeloblastoid leukemia 17 

10 LNCap Human prostate adenocarcinoma 17 

11 ZR-75-1 Human breast carcinoma 17 

12 MEL28 Human melanoma 16 

13 CHO Chinese hamster ovary 13 

14 WHCO1 Human esophageal cancer 12 

15 HepG2 Human liver hepatocellular carcinoma 12 

16 NSCLC-N6 Human bronchopulmonary carcinoma 9 

17 Lu1 Human lung cancer 9 

18 VERO African green monkey fibroblast-like kidney cell 9 

19 W138 Human embryonic lung fibroblasts 9 

20 DLD1 Human  colorectal adenocarcinoma 9 

21 HCT116 Human colon carcinoma 3 

22 26-L5 Murine colon carcinoma 3 

23 HL60 Human promyelocytic leukemia 2 

24 SNU-C4 Human colorectal cancer 2 

25 JB6C141 Mouse epidermal cell line 2 

26 THP-1 Human acute monocytic leukemia 2 

27 NCI-H460 Human lung cancer 2 

28 PM1 Human T-lymphoid 2 

29 B16 Mouse melanoma 1 

30 MRC5 Human fetal lung fibroblast 1 

31 RAW264.7 Mouse monocyte/macrophage 1 

32 L1210 Mouse lymphocytic leukemia 1 

33 BCA1 Human breast carcinoma 1 

34 U373 Human glioblastoma astrocytoma 1 

35 H116 Human colon carcinoma 1 

36 NCI-H187 Human small cell lung carcinoma 1 

37 NSCLC-N16-L16 Human Non-Small Lung Cancer 1 

38 HCT8 Human colorectal adenocarcinoma 1 

39 1A9 Human ovarian carcinoma 1 

40 HOS Human Osteosarcoma 1 

41 GRC-1 Human renal cell carcinoma 1 

42 SF-268 Human CNS Glioblastoma 1 

43 HT1080 Human fibrosarcoma 1 
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Figure 3.3: Structure diverse cytotoxic compounds in SWMD 
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Table 3.2: Structure and activity against various cancer cell lines 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) 

A431 MCF-7 HeLa HT29 

1 BD045 

 

74.1 64.1 60.0 67.9 

2 RL004 

 

92.7 86.3 81.4 78.4 

3 RL005 

 

178.8 167.7 174.4 170.5 

4 RL006 

 

>300 >300 >300 >300 

5 RL008 

 

93.4 104.1 114.6 98.7 

6 RL009 

 

198.4 177.6 204.3 130.4 

7 RL010 

 

277.4 265.4 240.8 287.3 

8 RL355 

 

>10 >10 >10 >10 

9 RL356 

 

>10 >10 >10 >10 

10 RL359 

 

>10 >10 >10 >10 
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Table 3.2 continued 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) 

A431 MCF-7 HeLa HT29 

11 RL360 

 

>10 >10 >10 >10 

12 RL012 

 

176.4 201.7 121.3 - 

13 RL013 

 

73.2 28.2 50.9 - 

14 RL014 

 

137.1 >300 111.3 - 

15 RL016 

 

23.9 15.8 40.5 - 

16 RL017 

 

122.0 95.5 88.6 - 

17 RL018 

 

45.8 51.4 51.8 - 

18 RL019 

 

105.1 >300 117.7 - 

19 RL020 

 

151.9 >300 154.2 - 

20 RL021 

 

74.6 67.2 83.9 - 
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Table 3.2 continued 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) 

A431 MCF-7 HeLa HT29 

21 RL022 

 

>200 >200 >200 - 

22 RL023 

 

81.6 78.3 105.8 - 

23 RL281 

 

78.4 140.5 80.5 - 

24 RL282 

 

65.2 135.6 78.0 - 

25 RL283 

 

135.5 >200 120.6 - 

26 RL284 

 

>200 >200 >200 - 

27 RL286 

 

65.8 172.3 34.4 - 

28 RL159 

 

13.1 11.7 - 12.4 

29 RL160 

 

72.1 73.6 - 70.4 
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Table 3.2 continued 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) 

A431 MCF-7 HeLa HT29 

30 RL161 

 

>100 >100 - >100 

31 RL162 

 

54.9 52.4 - 48.8 

32 RL163 

 

10.2 9.7 - 7.6 

33 RL164 

 

17.4 17.6 - 16.1 

34 RL165 

 

13.1 11.2 - 12.5 

35 RL166 

 

>100 >100 - >100 

36 RL167 

 

>100 >100 - >100 

37 RL168 

 

30.7 31.7 - 27.3 

38 RL169 

 

>100 >100 - >100 

39 RL170 

 

91.7 89.0 - 85.6 
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Table 3.2 continued 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) 

A431 MCF-7 HeLa HT29 

40 RL171 

 

>100 >100 - >100 

41 RL172 

 

21.6 19.7 - 18.9 

42 RC002 

 

- 4.2 - 1.7 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM)  

HT29 P388 A549 
 

43 BT007 

 

>120 >120 >120 
 

44 BT009 

 

0.9 1.4 7.3 
 

45 BT010 

 

3.0 1.7 5.4 
 

46 BT011 

 

2.8 2.1 5.4 
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Table 3.2 continued 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM)  

HT29 P388 A549 
 

47 BT012 

 

3.7 0.8 3.9 
 

  

 

    

48 RG001 
 

>130 87.1 >130 
 

49 RG003 

 

0.8 0.5 1.29 
 

50 RG004 
 

3.0 0.5 3.0 
 

51 RG005 

 

0.9 0.9 4.0 
 

52 RG006 
 

1.5 0.3 2.7 
 

  

 

    

53 RG007 

 

2.1 1.8 7.5 
 

54 RG008 

 

1.0 0.5 1.3 
 

55 RG009 
 

1.4 0.6 2.3 
 

56 RG012 

 

0.7 0.4 5.7 
 

57 RG013 
 

1.3 0.3 3.7 
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Table 3.2 continued 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM)  

HT29 P388 A549 
 

  

 

    

58 RG010 

 

3.4 1.2 2.0 
 

59 RG011 
 

3.4 1.2 2.0 
 

60 RG014 

 

0.7 0.2 0.6 
 

61 BS039 

 

5.65 - 5.6 
 

62 RL125 

 

16.5 0.01 16.53 
 

63 RL127 

 

4.26 0.02 4.26 
 

64 RL128 

 

4.26 0.02 4.26 
 

65 RL129 

 

4.26 0.43 4.26 
 

66 RL130 

 

9.09 2.18 4.54 
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Table 3.2 continued 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM)  

HT29 P388 A549 
 

67 RL131 

 

4.26 0.02 4.26 
 

68 RL132 

 

1.99 0.83 1.99 
 

69 RL133 

 

2.04 0.85 4.26 
 

70 RL134 

 

>1.6 0.4 >1.6 
 

71 RL135 

 

>1.6 0.02 >1.6 
 

72 RL136 

 

8.52 1.7 8.52 
 

73 RL535 

 

0.3 3.0 0.3 
 

74 RL536 

 

0.07 2.6 2.6 
 

75 RL537 

 

0.07 2.6 2.6 
 

76 RL538 

 

0.08 3.36 3.36 
 

 

 



 

Anticancer potential of marine algae - a chemoinformatics approach  Page | 72 

 

Table 3.2 continued 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM)  

HT29 P388 A549 
 

77 RL539 

 

1.67 16.7 16.7 
 

78 RL540 

 

0.6 12.0 12.0 
 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM)  

MCF-7 A549 
  

79 RR001 

 

>30 >30 
  

80 RR002 

 

>30 >30 
  

81 RR003 

 

>20 >20 
  

82 RR004 

 

>20 >20 
  

83 RR008 

 

>35 >35 
  

84 BL004 

 

2.7 2.5 
  

85 BL010 

 

2.7 1.8 
  

86 BL011 

 

4.6 5.4 
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Table 3.2 continued 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM)  

MCF-7 A549 
  

87 RR014 

 

>20 >20 
  

88 RR015 

 

>20 >20 
  

89 RR016 

 

>25 >25 
  

90 RR067 

 

>25 >25 
  

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) 
  

HeLa P388 
  

91 RL361 

 

5.73 6.46 
  

92 RL366 

 

35.9 35.9 
  

93 RL367 

 

0.68 2.49 
  

94 RL368 

 

10.8 14.5 
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Table 3.2 continued 

S.NO 
SWMD 

ACC NO. 
STRUCTURE 

IC50(μM)  

HeLa P388 
  

 

95 RL371 

 

11.6 18.2 
  

96 RL374 

 

5.73 4.25 
  

97 RL377 

 

15.2 6.21 
  

98 RL378 

 

12.6 14.6 
  

99 RL380 

 

2.19 3.94 
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Table 3.2 continued 

SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) 

MCF-7 P388 

100 

BD031 

 

130.0 
110 

BS051 

 

42.2 

101 

BD032 

 

135.8 
111 

BS052 

 

2.81 

102 

BD033 

 

61.2 
112 

RL064 

 

>300 

103 

BD034 

 

365.7 
113 

RL065 

 

2.9 

104 

BD035 

 

224.0 
114 

RL078 

 

0.99 

105 

BD036 

 

248.0 
115 

RL079 

 

10.62 

106 

BD037 

 

248.0 
116 

RL323 

 

0.004 
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Table 3.2 continued 

SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) 

MCF-7 P388 

107 

BD038 

 

458.4 
117 

RL324 

 

0.017 

108 

BD039 

 

72.5 
118 

RL325 

 

0.75 

109 

BS020 

 

>50 
119 

RL326 

 

0.46 

 

Table 3.2 continued 

SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) 

A549 A549 

120 

BD042 

 

41.1 
121 

BL018 

 

19.0 

122 

BL019 

 

19.5 
123 

BT002 

 

7.35 

124 

BT003 

 

7.35 
125 

RL001 

 

242.8 

126 

RL002 
 

52.4 
127 

RL003 
 

81.0 
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Table 3.2 continued 

SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) 

A549 A549 

128 

RL015 

 

153.5 
129 

RL251 

 

>25.0 

130 

RL252 

 

>25.0 
131 

RL253 

 

>25.0 

132 

RL254 

 

>25.0 
133 

RL255 

 

>25.0 

134 

RP066 
 

16.23 
135 

RP067 
 

18.97 

136 

RR010 

 

19.7 
137 

RR011 

 

14.7 

138 

RR012 

 

18.5 
139 

RR013 

 

14.5 

140 

RR047 

 

14.33 
141 

RR048 

 

22.7 

142 

RR049 
 

17.31 
143 

RR050 
 

34.84 
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Table 3.2 continued 

SWMD 

ACC NO. 
STRUCTURE 

IC50(μM) SWMD 
ACC NO. 

STRUCTURE 
IC50(μM) 

HeLa HeLa 

144 

RL512 

 

34.5 
145 

BD083 

 

98.0 

146 

RL513 

 

23.0 
147 

BD084 

 

182.0 

148 

RL514 

 

29.0 
149 

RP034 

 

126.0 

150 

RL515 

 

26.0 
151 

RP035 

 

132.0 

152 

RP036 
 

262.0 
153 

RP037 

 

13.05 

154 

RP039 

 

362.0 
155 

RP040 

 

125.0 

156 

RP041 

 

312.0 
157 

RP042 

 

282.0 
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 Measurement of cytotoxic activity in experimental cancer is expressed as half 

maximal (50%) inhibitory concentration of a substance (IC50) in pharmacological 

research. It exhibits how much of a meticulous substance/molecule is desirable to inhibit 

some biological progression by 50% and also the quantitative measure indicate how 

much, a specific drug or other core is needed to hinder a given biological process. These 

experimental values are expressed in nanomolar (nM – 10−9) and micromolar (μM – 10−6) 

levels.  To predict the narrow value from the experimental value, It is converted to the 

pIC50 scale (-log IC50), in which higher values indicate exponentially greater potency 

(Selvaraj et al. 2011). The formula for micromolar conversion of IC50 values to pIC50 

values is 

pIC50 = -log (IC50*10-6) 

The pIC50 values were used as the dependant variables to construct the QSAR model.  

 

3.5  Calculation of Molecular Descriptor  

 An important part of QSAR modeling is the use of software to create the 

structures and calculate descriptors to build predictive models. The molecules to be used 

in the study were from SWMD and are available as 2D and 3D structures. 3D structures 

were generated using Marvin Sketch. The resultant structures are crudely optimized 

using a molecular mechanics method within Marvin Sketch (Csizmadia 2000). Once the 

dataset has been converted to 3D structures, they are rigorously optimized with Molecular 

Orbital PACkage (Mopac). This program employs a semi-empirical method well suited to 

the purpose of geometry optimization. Since some molecular descriptors also require 

information about the electronic environment of the molecule, the molecules are also 

optimized for electronic properties (Stewart 1990).  

 Descriptors are (in general) numerical representations of specific molecular 

features. Such features can range from very simple ones such as the number of carbons 

or number of halogen atoms to more complex and abstract features such as graph 
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invariants of the molecular graph or the information content of a molecule as 

characterized by entropy. Several packages are available to calculate a wide variety of 

descriptors; examples include Dragon (Todeschini et al. 2004), Web-Cdk (Steinbeck et al. 

2006) and Vlife MDS QSAR. Descriptors for the present study were obtained using Vlife 

MDS; 239 descriptors based on the physicochemical properties of the molecule and 391 

alignment independent descriptors considering topology of the molecule was used. 

Physicochemical descriptors were categorised based on the physicochemical properties 

of molecule and were classified into 23 subclasses: Individual,  Retention Index (chi), 

Atomic valence connectivity index (chiv), Path Count, Chi Chain,  Chiv Chain, Chain Path 

Count, Cluster, Path Cluster, Kappa, Element Count, Dipole Moment,  Electrostatic, 

Distance Based Topological, Estate numbers, Estate Contributions, Information Theory 

Index, Semi Empirical, Hydrophobicity XlogpA, Hydrophobicity XlogpK, Hydrophobicity 

SlogpA, Hydrophobicity SlogpK and Polar Surface Area. 

 Baumann’s alignment independent (AI) descriptor was calculated for every atom 

in the molecule and was assigned at least one and at the most three attributes. The first 

attribute is‘T-attribute’to thoroughly characterize the topology of the molecule. The 

second attribute is the atom type, wherein the atom symbol is used here. The third 

attribute is assigned to atoms taking part in a double or triple bond. After all atoms have 

been assigned their respective attributes, selective distance count statistics for all 

combinations of different attributes are computed (Balaban 1982). A selective distance 

count statistic ‘XY2’ (e.g. ‘TOPO2N3) counts all the fragments between start atom 

with attribute ‘X’ (e.g. ‘2’double bonded atom) and end atom with attribute ‘Y’ 

(e.g. ‘N’) separated by the graph distance 3. The graph distance can be defined as the 

smallest number of atoms along the path connecting two atoms in molecular structure. In 

this study to calculate AI descriptors, we have used the following attributes: 2 (double 

bonded atom), 3(triple bonded atom), C, N, O, S, H, F, Cl, Br and I and the distance 

range of 0 to 7. 
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3.6 Selection of Relevant Descriptors  

 Feature selection techniques are applied to decrease the model complexity, to 

decrease the overfitting/overtraining risk, and to select the most important descriptors 

from the often more than 1000 calculated. The selected descriptors are then linked to a 

biological activity of the corresponding compound by means of a mathematical model. In 

the feature selection problem, a learning algorithm is faced with the problem of selecting 

a relevant subset of features upon which to focus attention, while ignoring the rest. One of 

the most important tasks, prior to modeling, is the selection of relevant descriptors with 

maximum information about the compounds and with a minimum co-linearity.   

 The three major categories of feature selection techniques are filter, wrapper, and 

hybrid methods. Filter feature selection method reduces the pool of descriptors into a 

smaller set based on a specified criterion, which is typically based on information content 

or intervariable correlations. Filter methods do not apply any learning machine in the 

process, and they perform an unsupervised feature selection. On the other hand, a linear 

or nonlinear classifier (or regressor) uses an objective function based on an optimization 

criterion to select descriptors. These methods are classified into the wrapper techniques. 

Although the wrapper approaches are computationally more expensive than filter 

methods, their generalization performance is better. Hybrid methods attempt to take 

advantage of the two approaches by exploiting the different evaluation criteria in different 

search stages. Most hybrid approaches are classified as wrapper methods, because 

there is not much difference between them, and before a wrapper method is applied, a 

filter method is used to reduce the number of variables (Goodarzi, Dejaegher & Heyden 

2012). Herein, hybrid method was employed for this dataset, where filter was applied in 

the first step followed with wrapper of genetic algorithms (GA) as feature selection and 

multiple linear regression (MLR) as regression technique. 

 All 630 descriptors for 157 anticancer compounds against six cancer cell lines  

models were calculated and screened for missing (or null) values, for which an open 



 

Anticancer potential of marine algae - a chemoinformatics approach  Page | 82 

 

source software - WEKA was used.  "WEKA" stands for the Waikato Environment for 

Knowledge Analysis, which was developed at the University of Waikato in New Zealand 

(Hall 2009). WEKA is a collection of machine learning algorithms for data mining tasks 

and freely available under the GNU General Public License. It is fully implemented in the 

Java programming language and thus runs on almost any modern computing platform 

(Bouckaert et al. 2010). The algorithms can either be applied directly to a dataset or 

called from our own Java code. WEKA contains tools for data pre-processing, 

classification, regression, clustering, association rules, and visualization. It is also well-

suited for developing new machine learning schemes. WEKA is used in research, 

education, and for other applications. There are three major implemented schemes in 

WEKA; (1) Implemented schemes for classification. (2) Implemented schemes for 

numeric prediction and (3) Implemented "metaschemes”. Besides actual learning 

schemes, WEKA also contains a large variety of tools that can be used for pre-processing 

datasets, so that one can focus on the algorithm without considering too much details as 

reading the data from files, implementing filtering algorithm and providing code to 

evaluate the results. 

 WEKA's main user interface is the Explorer, but essentially the same functionality 

can be accessed through the component-based Knowledge Flow interface and from the 

command line. There is also the Experimenter, which allows the systematic comparison 

of the predictive performance of WEKA's machine learning algorithms on a collection of 

datasets. The Explorer interface features several panels providing access to the main 

components of the workbench (Figure 3.4). The Preprocess panel has facilities for 

importing data from a database, a CSV file, etc., and for preprocessing this data using a 

so-called filtering algorithm. Filters evaluates features according to heuristics based on 

general characteristics of the data, these filters can be used to transform the data (e.g., 

turning numeric attributes into discrete ones) and make it possible to delete instances and 

attributes according to specific criteria. Physiochemical & AI descriptors were calculated 
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for all the 157 compounds and stored as a CSV file which was imported to WEKA. The 

compounds and descriptors with missing (or null) values were removed from the dataset 

using filters. Descriptors with more than 90% correlation in their values were identified 

and one of the correlated descriptors was removed using the command (Figure 3.4). 

weka.filters.unsupervised.attribute.RemoveUseless –M 90.0 

 
 

Figure 3.4: Descriptors with more than 90% correlation removed using WEKA 
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 A large number of descriptors are usually computed for a small set of molecules. 

However, a good descriptor set should contain the descriptors that are highly correlated 

with the target, yet uncorrelated with each other. The inter-correlation of the descriptors in 

all the models was tested using Correlation-based feature selection (CFS) algorithm in 

WEKA, a heuristic for evaluating the worth or merit of a subset of features. This heuristic 

takes into account the usefulness of individual features for predicting the class label along 

with the level of inter-correlation among them. The hypothesis on which the heuristic is 

based is: Good feature subsets contain features highly correlated with the class, yet 

uncorrelated with each other. The purpose of feature selection is to decide which of the 

initial (possibly large) number of features to be included in the final subset and which to 

ignore. CFS first calculates a matrix of feature class and feature-feature correlations from 

the training data and then searches the feature subset space using a best first search. 

The best first search starts with an empty set of features and generates all possible single 

feature expansions. The subset with the highest evaluation is chosen and expanded in 

the same manner by adding single features. If expanding a subset results in no 

improvement, the search drops back to the next best unexpanded subset and continues 

from there. Given enough time a best first search will explore the entire feature subset 

space, so it is common to limit the number of subsets expanded that result in no 

improvement. The best subset found is returned when the search terminates. CFS uses a 

stopping criterion of five consecutive fully expanded non-improving subsets (Hall 1998). 

CFS includes a heuristic to include locally predictive features and avoid the re-

introduction of redundancy. Models where the descriptors are highly inter-correlated are 

replaced and refined so that the descriptors employed in a given model are virtually 

orthogonal to each other. The following command was employed. 

weka.attributeSelection.CfsSubsetEval 
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3.7  Descriptor Set Optimization 

 Optimization of descriptor set and selecting an appropriate statistical or machine 

learning technique plays a major role in developing the robust QSAR prediction models. It 

is vitally necessary to avoid the oversimplification of the QSAR modelling process and 

employ statistically robust approaches for the model development. In one hand, the 

uniqueness of a compound and its total chemical information cannot be described by very 

few descriptors while on the other hand large number of descriptors will create confusions 

and reduce the statistical robustness and predictive ability of the model. The feature 

optimization techniques are used to remove the irrelevant and correlated descriptors. The 

genetic algorithm (GA), which belongs to the class of evolutionary algorithms, has been 

widely used for feature optimization in QSAR models (Niculescu 2003; Wehrens, Pretsch 

& Buydens 1999).  

 The genetic algorithms (GA) are stochastic methods based on natural evolution 

principles introduced by Holland (1975) and relies on Darwin’s evolution theory. Features 

play the role of genes, and a set of features is called a chromosome. Each individual 

object of a population is described by a chromosome of binary values, zeros or ones. The 

first generation is selected randomly, and the state of each variable is represented by the 

value 1 (selected) or zero (not selected). The practical application of GAs requires the 

tuning of some parameters, such as the population size, generation gap, crossover rate, 

and mutation rate. Crossover is an operation in which a pair of chromosomes is divided, 

mutually exchanged, and merged. Mutation is a genetic operator (change from a zero to 

one and vice versa) used to maintain genetic diversity from one generation of a 

population of algorithm chromosomes to the next.  

 Genetic algorithm search procedures are loosely based on the principal of natural 

selection: they “evolve” good feature subsets by using random perturbations of a current 

list of candidate subsets. Solutions generated by GA have less probability of being 

affected by local minima due to the use of inheritance, mutation, selection, and crossover 
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(Vose 1999). Since GA does not carry out the fitness evaluation of the population, 

different types of fitness functions are used for this purpose, including the correlation-

based feature selection (CFS) (Hall & Holmes 2003; Chou et al. 2007) and Multiple Linear 

Regression (MLR) (Garg & Bhhatarai 2006). 

 Multiple linear regression (MLR) is one of the most fundamental and common 

modeling method for regression QSAR. Recent application of MLR in QSAR includes 

prediction for luteinizing hormone-releasing hormone antagonists (Fernández & Caballero 

2007), 5-HT6 receptor ligands (Goodarzi, Freitas, & Ghasemi 2010), interleukin-1 

receptor-associated kinase 4 inhibitors (Pourbasheer et al. 2010), potencies of endocrine 

disruptors (Papa, Kovarich & Gramatica 2010), and chlorine demand by organic 

molecules (Luilo & Cabaniss 2010). MLR is favoured for its simplicity and ease of 

interpretation as the model assumes a linear relationship between the compounds 

property, Y, and its feature vector, denoted X, which is usually the molecular descriptors. 

Thus, with the notion of X, the property of an unknown compound can be predicted by the 

fitted model. The following equation represents a general expression of a MLR model:  

Y = β0 + β1X1 + β2X2 + . . .  + βkXk 

 

where β0 is the model constant, X1, . . . , Xk are molecular descriptors with their 

corresponding coefficients β1, . . . , βk (for molecular descriptors 1 through k). The size of 

the coefficients may reveal the degree of influence of the corresponding molecular 

descriptors on the target property. In addition, a positive coefficient suggests that the 

corresponding molecular descriptor contributes positively to the target property, while a 

negative coefficient suggests negative contribution. However, these interpretations may 

not be accurate as collinear descriptors have the potential to influence the coefficients 

such that erroneous values may be assigned. Thus, the molecular descriptors in the 

model should be independent of each other and the number of instances for model 

building should be at least five times the number of descriptors used (Topliss & Edwards 

1979).  
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 Although MLR is computationally simple and the prediction models give strong 

mechanistic interpretation, it is criticized for its lack of robustness in handling the 

nonlinear data. It also has certain other limitations, especially when the number of 

variables is large, or when the degree of correlation between the variables (or samples) is 

large. In regression model the contribution of each descriptor could be seen by the 

magnitude and sign of its regression coefficient. Descriptor coefficient magnitude shows 

its relative contribution with respect to other descriptors and the sign indicates whether it 

is directly (+) or inversely (-) proportional to the activity. To date, MLR remains in use with 

enhancements or in combination with feature selection to improve its performance. 

Examples of enhancements are: the use of independent component analysis – MLR in 

QPSR of aqueous solubility, local lazy regression, retro-regression applied on boiling 

points of nonanes, ensemble feature selection, and other feature selection methods like 

genetic algorithm (GA), ridge regression, partial least-squares method, pair-correlation 

method, forward selection, and best subset selection in the application of MLR 

(Gharagheizi 2008; Yee & Wei 2012) 

 The GA–MLR method was developed by Rogers and Hopfinger (1994), GA 

optimization technique for descriptor space reduction and MLR approach used as fitness 

function. In the present study, GA-MLR hybrid optimization technique was employed, 

where GA is used for searching the descriptor subspace, whereas the MLR is used for 

fitness evaluation. GA is governed by biological evolution rules and can investigate 

several possible solutions simultaneously, each of which explores different regions in the 

descriptor space. Fitness of each solution is evaluated by MLR, a linear fitness function. 

GeneticSearch in WEKA uses a simple genetic algorithm (Goldberg et al. 1993). 

Parameters include population size, number of generations, and probabilities of crossover 

and mutation. A list of attribute indices specified as a starting point becomes a member of 

the initial population. Progress reports can be generated for so many generations. Default 

values used in WEKA were selected for the GA parameters, such as 20 generations, 
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population size of 20, crossover probability of 0.6 and mutation probability of 0.033 was 

used.  

   

Figure 3.5: Descriptors set optimization using Genetic Algorithm in WEKA 
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 In the present study, the attribute selection in WEKA using M5's method, step 

through the attributes removing the one with the smallest standardised coefficient until no 

improvement is observed in the estimate of the error given by the Akaike information 

criterion was used for MLR. The sizes of the coefficients reveal the degree of influence of 

the corresponding molecular descriptors on the target property. In the present work, GA 

was employed for the variable selection to select the relevant molecular descriptors, and 

developed an MLR model for the QSAR analysis using WEKA (Figure 3.5). The selection 

of the best model was based on the values of correlation coefficient obtained from the 

correlation of approximately 630 descriptors in different combinations. 

 

3.8 Validation of QSAR Models 

 QSAR modeling is applied with the focus on developing retrospective and 

explanatory models of existing data. QSAR model is used increasingly to screen chemical 

database and/or virtual chemical libraries for potentially bioactive molecules. This 

development emphasize the importance of rigorous model validation to insure that the 

model have both the ability to explain the variance in the biological activity and also the 

acceptable predictive power. One of the major applications of QSAR models is to predict 

the biological activity of untested compounds from their molecular structures (Konovalov 

et al 2008). The estimation of accuracy of predictions is a critical problem in QSAR 

modeling (Tetko et al 2008). Four tools of assessing validity of QSAR models are (i) 

randomization of the response data, (ii) cross-validation, (iii) bootstrapping, (iv) external 

validation by splitting of set of chemical compounds into a training and a test set and/or 

confirmation using an independent external validation set or external validation using a 

designed validation set (Wold & Eriksson 1995).  It is commonly accepted that the internal 

validation of QSAR models built from training sets is sufficient to confirm their predictive 

power (Zhang, Golbraikh & Tropsha 2006). However, previous studies in this as well as 

several other laboratories demonstrated that no correlation exists between leave-one-out 
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(LOO) cross-validated R2 (Q2) for the training set and the correlation coefficient R2 

between the predicted and observed activities for the test set (Zhang et al. 2007). These 

findings indicated that in order to obtain QSAR models with high predictive ability, 

external validation was critical.  

 For model validation the data set is required to be divided in to training set and 

test set. For any QSAR model, it is of crucial importance that the training set selected to 

calibrate the model exhibits a well balanced distribution and contain representative 

molecules. The methods employed for division of data set includes (i) Manual Selection 

where it is done by visualizing the variation in the chemical and biological space of the 

given data set. (ii) Random Selection where the method creates training and test set by 

random distribution. (iii) Sphere Execution Method (iv) Principle Component Analysis, (v) 

Cluster Analysis and (vi) Self Organizing Maps (SOM). Sphere Exclusion (SE) algorithm 

is a general procedure that is typically applied to molecules characterized by multiple 

descriptors of their chemical structures (Snarey et al. 1997). SE is a rational method for 

creation of training and test set. It insures that the points in both the sets are uniformly 

distributed with respect to chemical and biological space. The entire dataset can then be 

treated as a collection of points (each point corresponding to an individual compound) in 

the descriptor space. The goal of the SE method is to divide a dataset into two subsets 

(training and test sets) using a diversity sampling procedure (Golbraikh & Tropsha 2002). 

 To evaluate the performance of the QSAR model, Leave-one-out cross validation 

(LOOCV) is carried out to obtain the optimal number of components (N) and the 

correlation coefficient Q2. LOOCV strategies are implemented in which one molecule is 

taken from the dataset of compounds as a test compound and the remaining compounds 

used for model building. This process is repeated (N-1) times such that each compound 

come in test set one time. Once the model was constructed, fitness of model was 

assessed using the following statistical parameters.  
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 Where Xi and Yi represent actual and predicted pIC50 value for the ith compound, 

N is number of compounds, and X represents the averaged value of the actual pIC50 

value for the whole dataset. The obtained N is then used to derive the final QSAR model 

and to obtain the non-cross-validation correlation coefficient. Then, the obtained equation 

is used to predict pIC50 values for the compounds from the corresponding test sets. Final 

QSAR models are generated within the training set, and they are used to predict the 

activity of the test set compounds.  

 

Figure 3.6: Flowchart of methodology adopted for building and validating QSAR 

models for marine algal compounds 

  
Validation of QSAR models for training & test set 

Prediction of test set activity 

Generation of QSAR models 

Division into training & test set by Sphere Execution Method  

Optimization of descriptors using GA-MLR 

Selection of relevant descriptors using WEKA 

Calculation of 630 descriptors 

157 Compounds with cytotoxic activity against 6 different cell lines 

245 Compounds with cytotoxic activity citied  

SWMD 1055 Compounds 



 

Anticancer potential of marine algae - a chemoinformatics approach  Page | 92 

 

 In the present study, Compounds in SWMD listed with cytotoxic activity were used 

in the QSAR study. Figure 3.6 illustrates the steps taken for developing the final QSAR 

models in a schematic fashion. The dataset consisted of compounds having cytotoxic 

activity against cancer cell lines each having more than 40 compounds, wherein cell lines 

MCF-7, A431, HeLa, HT-29, P388 and A549 were taken.  2D descriptors were calculated 

using Vlife MDS for all the 157 compounds selected. Descriptor analysis of all the QSAR 

models was performed to derive commonality among various cell lines belonging to a 

cancer type. Linear forward selection was used for searching the descriptor subspace 

wherein, CFS algorithm in WEKA was employed to evaluate the descriptors. Models 

where the descriptors were highly inter-correlated were replaced and refined so that the 

descriptors employed in a given model are virtually orthogonal to each other. The hybrid 

GA-MLR technique was used to optimize the descriptors. This pre-screening gave a 

quality-assured dataset of compounds which are used for further analysis. 

 The regression models are developed by dividing the dataset into multiple 

chemically diverse training and test sets with a rational approach based on Sphere 

Exclusion (SE) algorithm. The training sets were used to build models and the test sets 

were used for model validation. To evaluate the performance without any bias, two 

independent test set was made and the remaining compounds were used for model 

development using the LOOCV method. The test set is not used during training but 

serves to test the predictive ability of final models. For each compound in the training set, 

a correlation equation was derived with descriptors. The observed and predicted activity 

with residuals and descriptor values for all the developed models are presented in Tables 

3.3 to 3.14. The predicted biological activities of untested compounds from their 

molecular structures are also presented in the above said tables. The two independent 

test set are presented at the end of the table marked with asterisks. The MLR regression 

equations for each of the table are also presented.  
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Table 3.3: Descriptor, experimental and predicted pIC50 values and their residuals 

for test set 1 compounds in A431 QSAR model 

SWMD 
ACC NO. 

5ChainCo
unt 

SsssCHE-
index 

T_2_Br_5 T_O_Br_4 Exp. Pred. Res. 

BD045 1 1.898 0 0 4.13 4.291 0.161 

RL004 1 0.927 0 0 4.033 4.087 0.054 

RL005 1 0.699 2 0 3.748 3.675 -0.073 

RL006 2 1.624 4 0 
 

3.210 
 

RL008 1 0.923 0 0 4.03 4.086 0.056 

RL009 1 1.006 2 0 3.702 3.74 0.038 

RL010 1 1.006 2 0 3.557 3.74 0.183 

RL012 1 0.142 0 0 3.754 3.922 0.168 

RL013 0 1.049 1 0 4.135 4.228 0.093 

RL014 1 1.188 2 0 3.863 3.778 -0.085 

RL016 1 0.445 0 0 4.622 3.986 -0.636 

RL019 0 -0.814 0 0 3.978 4.017 0.039 

RL020 0 -0.814 0 0 3.818 4.017 0.199 

RL021 1 0.912 0 0 4.127 4.084 -0.043 

RL022 1 0.912 0 0 
 

4.084 
 

RL159 0 0.750 0 1 4.883 4.661 -0.222 

RL160 0 0.715 1 1 4.142 4.472 0.33 

RL161 0 0.801 1 1 
 

4.490 
 

RL163 0 1.900 0 1 4.991 4.903 -0.088 

RL164 0 1.990 1 1 4.759 4.74 -0.019 

RL165 0 2.818 0 0 4.883 4.782 -0.101 

RL166 0 2.818 0 0 
 

4.782 
 

RL167 0 1.884 0 1 
 

4.899 
 

RL168 0 2.802 0 0 4.513 4.778 0.265 

RL169 1 1.387 1 0 
 

4.002 
 

RL170 1 1.387 1 0 4.038 4.002 -0.036 

RL171 1 1.202 1 0 
 

3.963 
 

RL172 0 1.306 1 0 4.666 4.282 -0.384 

RL281 0 0.399 1 0 4.106 4.091 -0.015 

RL282 0 0.399 1 0 4.186 4.091 -0.095 

RL283 1 0.899 0 0 3.868 4.081 0.213 

RL284 1 1.325 0 0 
 

4.171 
 

RL355 1 1.103 0 0 
 

4.124 
 

RL356 1 -0.632 0 0 
 

3.759 
 

RL359 1 2.462 0 0 
 

4.410 
 

RL360 0 0.390 0 0 
 

4.270 
 

RL017* 1 0.562 1 0 3.914 3.828 -0.086 

RL023* 1 0.577 1 0 4.088 3.832 -0.256 

RL162* 0 2.059 0 0 4.26 4.622 0.362 

RL286* 2 3.578 1 1 4.182 4.481 0.299 

Obsevered pIC50 (Exp.), Predicted pIC50 (Pred.), residual (Res.) and test set is marked with (*) 

R
2
= -0.2967*5ChainCount +0.2105*SsssCHE-index -0.1817*T_2_Br_5 +0.3143 

*T_O_Br_4 +4.1884 
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Table 3.4: Descriptor, experimental and predicted pIC50 values and their residuals 

for test set 2 compounds in A431 QSAR model 

SWMD 
ACC NO. 

5ChainCo
unt 

SsssCHE-
index 

T_2_Br_5 T_O_Br_4 Exp. Pred. Res. 

BD045 1 1.898 0 0 4.13 4.212 0.082 

RL004 1 0.927 0 0 4.033 4.072 0.039 

RL005 1 0.699 2 0 3.748 3.713 -0.035 

RL006 2 1.624 4 0 
 

3.207 
 

RL008 1 0.923 0 0 4.03 4.071 0.041 

RL009 1 1.006 2 0 3.702 3.757 0.055 

RL010 1 1.006 2 0 3.557 3.757 0.2 

RL012 1 0.142 0 0 3.754 3.959 0.205 

RL013 0 1.049 1 0 4.135 4.238 0.103 

RL016 1 0.445 0 0 4.622 4.003 -0.619 

RL017 1 0.562 1 0 3.914 3.856 -0.058 

RL019 0 -0.814 0 0 3.978 4.133 0.155 

RL020 0 -0.814 0 0 3.818 4.133 0.315 

RL022 1 0.912 0 0 
 

4.070 
 

RL023 1 0.577 1 0 4.088 3.858 -0.23 

RL159 0 0.750 0 1 4.883 4.753 -0.13 

RL161 0 0.801 1 1 
 

4.597 
 

RL162 0 2.059 0 0 4.26 4.547 0.287 

RL163 0 1.900 0 1 4.991 4.919 -0.072 

RL164 0 1.990 1 1 4.759 4.769 0.01 

RL165 0 2.818 0 0 4.883 4.657 -0.226 

RL166 0 2.818 0 0 
 

4.657 
 

RL167 0 1.884 0 1 
 

4.917 
 

RL168 0 2.802 0 0 4.513 4.655 0.142 

RL169 1 1.387 1 0 
 

3.975 
 

RL170 1 1.387 1 0 4.038 3.975 -0.063 

RL171 1 1.202 1 0 
 

3.948 
 

RL172 0 1.306 1 0 4.666 4.276 -0.39 

RL281 0 0.399 1 0 4.106 4.145 0.039 

RL282 0 0.399 1 0 4.186 4.145 -0.041 

RL284 1 1.325 0 0 
 

4.129 
 

RL286 2 3.578 1 1 4.182 4.374 0.192 

RL355 1 1.103 0 0 
 

4.097 
 

RL356 1 -0.632 0 0 
 

3.847 
 

RL359 1 2.462 0 0 
 

4.293 
 

RL360 0 0.390 0 0 
 

4.307 
 

RL014* 1 1.188 2 0 3.863 3.783 -0.08 

RL021* 1 0.912 0 0 4.127 4.07 -0.057 

RL160* 0 0.715 1 1 4.142 4.585 0.443 

RL283* 1 0.899 0 0 3.868 4.068 0.2 

Obsevered pIC50 (Exp.), Predicted pIC50 (Pred.), residual (Res.) and test set is marked with (*) 

R
2
= -0.3121*5ChainCount +0.1442*SsssCHE-index -0.1632*T_2_Br_5 +0.3946 

*T_O_Br_4 +4.2504 
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Table 3.5: Descriptor, experimental and predicted pIC50 values and their residuals 

for test set 1 compounds in A549 QSAR model 

SWMD 
ACC NO. 

SaaCHE-
index 

T_2_Cl_1 
chiV3Clus

ter 
SAMostHy
drophilic 

Exp. Pred. Res. 

BD042 0 0 0.633 -0.112 4.386 5.280 0.894 

BL004 1.59 0 1.011 -0.098 5.602 5.148 -0.454 

BL011 3.176 0 0.945 -0.103 5.268 4.812 -0.456 

BL018 3.198 0 0.908 -0.102 4.721 4.783 0.062 

BL019 3.17 0 0.908 -0.099 4.71 4.778 0.068 

BS039 3.367 0 1.196 -0.089 5.248 4.880 -0.368 

BT002 0 0 0.784 -0.02 5.134 5.076 -0.058 

BT003 0 0 0.784 -0.02 5.134 5.076 -0.058 

BT007 0 0 1.317 -0.03 
 

5.426 
 

BT009 0 0 1.36 -0.032 5.137 5.458 0.321 

BT010 0 0 1.242 -0.032 5.262 5.388 0.126 

BT011 0 0 1.39 -0.119 5.268 5.755 0.487 

RG001 0 0 1.245 -0.106 
 

5.627 
 

RG003 0 0 1.244 -0.106 5.889 5.626 -0.263 

RG004 0 0 0.956 -0.107 5.516 5.457 -0.059 

RG005 0 0 1.252 -0.107 5.396 5.634 0.238 

RG006 0 0 0.956 -0.12 5.569 5.499 -0.07 

RG008 0 0 1.271 -0.125 5.87 5.703 -0.167 

RG009 0 0 0.983 -0.125 5.635 5.531 -0.104 

RG010 0 0 1.24 -0.032 5.688 5.387 -0.301 

RG012 0 0 1.279 -0.124 5.243 5.705 0.462 

RG013 0 0 0.983 -0.119 5.431 5.512 0.081 

RG014 0 0 1.202 -0.032 6.18 5.364 -0.816 

RL002 4.131 0 0.702 -0.067 4.281 4.364 0.083 

RL003 6.089 0 0.594 -0.088 4.092 3.981 -0.111 

RL015 4.685 0 1.208 -0.026 3.814 4.426 0.612 

RL125 0 0 0.613 -0.136 4.782 5.345 0.563 

RL127 0 0 0.758 -0.118 5.371 5.374 0.003 

RL128 0 0 0.758 -0.128 5.371 5.406 0.035 

RL129 0 0 0.795 -0.118 5.371 5.396 0.025 

RL131 0 0 0.765 -0.099 5.371 5.318 -0.053 

RL132 0 0 0.838 -0.14 5.701 5.492 -0.209 

RL133 0 0 0.795 -0.129 5.371 5.431 0.06 

RL134 0 0 0.604 -0.212 5.79 5.583 -0.207 

RL135 0 0 0.604 -0.214 5.79 5.589 -0.201 

RL251 0 0 0.831 -0.14 
 

5.488 
 

RL252 0 0 0.831 -0.224 
 

5.757 
 

RL253 0 0 0.717 -0.02 
 

5.036 
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Table 3.5 continued 

SWMD 
ACC NO. 

SaaCHE-
index 

T_2_Cl_1 
chiV3Clus

ter 
SAMostHy
drophilic 

Exp. Pred. Res. 

RL254 0 0 0.888 0.003 
 

5.064 
 

RL255 0 0 0.856 0.002 
 

5.049 
 

RL535 0 1 0.774 -0.1 6.523 6.523 0 

RL536 0 0 0.515 -0.11 5.575 5.203 -0.372 

RL537 0 0 0.515 -0.102 5.575 5.178 -0.397 

RL538 0 0 0.541 -0.101 5.474 5.190 -0.284 

RL539 0 0 0.48 -0.103 4.777 5.160 0.383 

RP066 0 0 0.346 -0.018 4.79 4.808 0.018 

RP067 0 0 0.374 -0.02 4.722 4.831 0.109 

RR001 1.502 0 0.658 -0.107 
 

4.983 
 

RR002 1.518 0 0.572 -0.105 
 

4.922 
 

RR003 4.576 0 0.979 -0.099 
 

4.544 
 

RR004 4.953 0 0.979 -0.094 
 

4.454 
 

RR008 3.403 0 0.437 -0.101 
 

4.458 
 

RR010 1.571 0 0.473 -0.125 4.706 4.917 0.211 

RR011 1.411 0 0.473 -0.1 4.833 4.868 0.035 

RR012 2.992 0 0.383 -0.1 4.733 4.503 -0.23 

RR013 2.863 0 0.908 -0.124 4.839 4.919 0.08 

RR014 3.005 0 1.204 -0.13 
 

5.087 
 

RR015 4.525 0 1.041 -0.302 
 

5.241 
 

RR016 1.505 0 0.768 -0.156 
 

5.205 
 

RR048 1.606 0 0.473 -0.106 4.644 4.849 0.205 

RR049 3.176 0 0.945 -0.105 
 

4.819 
 

RR050 2.833 0 0.361 -0.104 4.458 4.534 0.076 

RR067 1.434 0 0.768 -0.143 
 

5.178 
 

BL010* 3.302 0 0.945 -0.102 5.745 4.784 -0.961 

BT012* 0 0 1.272 -0.116 5.407 5.675 0.268 

RG007* 0 0 1.067 -0.125 5.121 5.581 0.46 

RG011* 0 0 0.953 -0.032 5.688 5.215 -0.473 

RL001* 4.718 0 0.503 -0.012 3.615 3.953 0.338 

RL130* 0 0 0.933 -0.139 5.343 5.546 0.203 

RL136* 0 0 0.773 -0.125 5.07 5.406 0.336 

RL540* 0 0 0.629 -0.102 4.919 5.246 0.327 

RR047* 2.72 0 0.39 -0.103 4.844 4.570 -0.274 

Obsevered pIC50 (Exp.), Predicted pIC50 (Pred.), residual (Res.) and test set is marked with (*) 

R
2
= -0.1969*SaaCHE-index +1.1969*T_2_Cl_1 +0.5973*chiV3Cluster -3.2011 

*SAMostHydrophilic +4.5436 
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Table 3.6: Descriptor, experimental and predicted pIC50 values and their residuals 

for test set 2 compounds in A549 QSAR model 

SWMD 
ACC NO. 

SaaCHE-
index 

T_2_Cl_1 
chiV3Clus

ter 
SAMostHy
drophilic 

Exp. Pred. Res. 

BD042 0 0 0.633 -0.112 4.386 5.243 0.857 

BL004 1.59 0 1.011 -0.098 5.602 5.158 -0.444 

BL010 3.302 0 0.945 -0.102 5.745 4.8 -0.945 

BL018 3.198 0 0.908 -0.102 4.721 4.794 0.073 

BL019 3.17 0 0.908 -0.099 4.71 4.791 0.081 

BS039 3.367 0 1.196 -0.089 5.248 4.921 -0.327 

BT002 0 0 0.784 -0.02 5.134 5.091 -0.043 

BT003 0 0 0.784 -0.02 5.134 5.091 -0.043 

BT007 0 0 1.317 -0.03 
 

5.479 
 

BT010 0 0 1.242 -0.032 5.262 5.434 0.172 

BT011 0 0 1.39 -0.119 5.268 5.774 0.506 

BT012 0 0 1.272 -0.116 5.407 5.686 0.279 

RG001 0 0 1.245 -0.106 
 

5.640 
 

RG003 0 0 1.244 -0.106 5.889 5.64 -0.249 

RG006 0 0 0.956 -0.12 5.569 5.484 -0.085 

RG007 0 0 1.067 -0.125 5.121 5.572 0.451 

RG008 0 0 1.271 -0.125 5.87 5.71 -0.16 

RG009 0 0 0.983 -0.125 5.635 5.516 -0.119 

RG010 0 0 1.24 -0.032 5.688 5.433 -0.255 

RG011 0 0 0.953 -0.032 5.688 5.239 -0.449 

RG012 0 0 1.279 -0.124 5.243 5.713 0.47 

RG013 0 0 0.983 -0.119 5.431 5.499 0.068 

RG014 0 0 1.202 -0.032 6.18 5.407 -0.773 

RL001 4.718 0 0.503 -0.012 3.615 3.984 0.369 

RL003 6.089 0 0.594 -0.088 4.092 3.995 -0.097 

RL015 4.685 0 1.208 -0.026 3.814 4.505 0.691 

RL127 0 0 0.758 -0.118 5.371 5.344 -0.027 

RL128 0 0 0.758 -0.128 5.371 5.372 0.001 

RL129 0 0 0.795 -0.118 5.371 5.369 -0.002 

RL130 0 0 0.933 -0.139 5.343 5.521 0.178 

RL131 0 0 0.765 -0.099 5.371 5.297 -0.074 

RL133 0 0 0.795 -0.129 5.371 5.4 0.029 

RL134 0 0 0.604 -0.212 5.79 5.5 -0.29 

RL135 0 0 0.604 -0.214 5.79 5.505 -0.285 

RL136 0 0 0.773 -0.125 5.07 5.374 0.304 

RL251 0 0 0.831 -0.14 
 

5.454 
 

RL252 0 0 0.831 -0.224 
 

5.686 
 

RL253 0 0 0.717 -0.02 
 

5.046 
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Table 3.6 continued 

SWMD 
ACC NO. 

SaaCHE-
index 

T_2_Cl_1 
chiV3Clus

ter 
SAMostHy
drophilic 

Exp. Pred. Res. 

RL254 0 0 0.888 0.003 
 

5.098 
 

RL255 0 0 0.856 0.002 
 

5.079 
 

RL535 0 1 0.774 -0.1 6.523 6.523 0 

RL536 0 0 0.515 -0.11 5.575 5.158 -0.417 

RL538 0 0 0.541 -0.101 5.474 5.151 -0.323 

RL539 0 0 0.48 -0.103 4.777 5.115 0.338 

RL540 0 0 0.629 -0.102 4.919 5.213 0.294 

RP066 0 0 0.346 -0.018 4.79 4.79 0 

RP067 0 0 0.374 -0.02 4.722 4.814 0.092 

RR001 1.502 0 0.658 -0.107 
 

4.961 
 

RR002 1.518 0 0.572 -0.105 
 

4.895 
 

RR003 4.576 0 0.979 -0.099 
 

4.572 
 

RR004 4.953 0 0.979 -0.094 
 

4.487 
 

RR008 3.403 0 0.437 -0.101 
 

4.435 
 

RR010 1.571 0 0.473 -0.125 4.706 4.873 0.167 

RR011 1.411 0 0.473 -0.1 4.833 4.834 0.001 

RR013 2.863 0 0.908 -0.124 4.839 4.919 0.08 

RR014 3.005 0 1.204 -0.13 
 

5.108 
 

RR015 4.525 0 1.041 -0.302 
 

5.184 
 

RR016 1.505 0 0.768 -0.156 
 

5.170 
 

RR047 2.72 0 0.39 -0.103 4.844 4.538 -0.306 

RR048 1.606 0 0.473 -0.106 4.644 4.814 0.17 

RR049 3.176 0 0.945 -0.105 
 

4.832 
 

RR050 2.833 0 0.361 -0.104 4.458 4.5 0.042 

RR067 1.434 0 0.768 -0.143 
 

5.148 
 

BL011* 3.176 0 0.945 -0.103 5.268 4.826 -0.442 

BT009* 0 0 1.36 -0.032 5.137 5.514 0.377 

RG004* 0 0 0.956 -0.107 5.516 5.448 -0.068 

RG005* 0 0 1.252 -0.107 5.396 5.648 0.252 

RL002* 4.131 0 0.702 -0.067 4.281 4.381 0.1 

RL125* 0 0 0.613 -0.136 4.782 5.296 0.514 

RL132* 0 0 0.838 -0.14 5.701 5.459 -0.242 

RL537* 0 0 0.515 -0.102 5.575 5.136 -0.439 

RR012* 2.992 0 0.383 -0.1 4.733 4.473 -0.26 

Obsevered pIC50 (Exp.), Predicted pIC50 (Pred.), residual (Res.) and test set is marked with (*) 

R
2
= -0.1898*SaaCHE-index +1.2175*T_2_Cl_1 +0.6755*chiV3Cluster -2.7608 

*SAMostHydrophilic +4.5065 
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Table 3.7: Descriptor, experimental and predicted pIC50 values and their residuals 

for test set 1 compounds in HeLa QSAR model 

SWMD 
ACC NO. 

5PathCou
nt 

XlogP T_O_Br_6 
3ChainCo

unt 
Exp. Pred. Res. 

BD045 87 3.605 0 0 4.222 4.063 -0.159 

BD083 57 3.374 0 0 4.009 3.968 -0.041 

BD084 52 3.793 0 0 3.74 3.91 0.17 

RL005 97 6.617 0 0 3.758 3.822 0.064 

RL006 206 10.302 2 2 
 

5.611 
 

RL008 87 5.972 0 1 3.941 4.11 0.169 

RL009 44 5.645 0 0 3.69 3.707 0.017 

RL010 44 5.645 0 0 3.618 3.707 0.089 

RL012 51 3.979 0 0 3.916 3.888 -0.028 

RL013 58 3.147 0 0 4.293 3.993 -0.3 

RL014 95 3.673 1 0 
 

4.675 
 

RL016 45 4.355 0 0 4.393 3.83 -0.563 

RL019 58 1.911 0 0 3.929 4.108 0.179 

RL020 58 1.911 0 0 3.812 4.108 0.296 

RL021 82 5.176 0 1 4.076 4.164 0.088 

RL022 74 4.464 0 0 
 

3.933 
 

RL023 56 5.731 0 0 3.976 3.745 -0.231 

RL281 70 3.174 0 0 4.094 4.037 -0.057 

RL282 70 3.174 0 0 4.108 4.037 -0.071 

RL283 95 2.637 0 0 3.919 4.184 0.265 

RL284 95 3.166 0 0 
 

4.135 
 

RL286 99 4.685 0 0 4.463 4.009 -0.454 

RL355 44 4.043 0 0 
 

3.855 
 

RL356 34 2.644 0 0 
 

3.947 
 

RL359 35 4.291 1 0 
 

4.385 
 

RL360 22 3.716 0 0 
 

3.800 
 

RL361 182 3.160 1 1 5.242 5.327 0.085 

RL366 144 9.000 1 0 4.445 4.37 -0.075 

RL367 155 3.115 1 1 6.168 5.226 -0.942 

RL368 193 3.796 1 1 4.967 5.311 0.344 

RL371 161 4.242 1 0 4.934 4.878 -0.056 

RL377 175 2.524 1 1 4.818 5.359 0.541 

RL380 164 1.888 1 1 5.66 5.375 -0.285 

RL512 130 5.943 1 0 4.462 4.6 0.138 

RL513 133 5.356 1 0 4.638 4.666 0.028 

RL514 115 3.603 1 0 4.538 4.759 0.221 
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Table 3.7 continued 

SWMD 
ACC NO. 

5PathCou
nt 

XlogP T_O_Br_6 
3ChainCo

unt 
Exp. Pred. Res. 

RP034 37 4.314 0 0 3.9 3.803 -0.097 

RP035 11 4.001 0 0 3.879 3.731 -0.148 

RP036 31 3.940 0 0 3.582 3.814 0.232 

RP039 33 5.229 0 0 3.441 3.702 0.261 

RP041 33 5.406 0 0 3.506 3.686 0.18 

RP042 37 5.542 0 0 3.55 3.689 0.139 

RL004* 87 6.274 0 1 4.089 4.082 -0.007 

RL017* 49 4.935 0 0 4.053 3.792 -0.261 

RL374* 186 3.160 1 1 5.242 5.342 0.1 

RL378* 175 2.524 1 1 4.899 5.359 0.46 

RL515* 121 2.778 1 0 4.585 4.859 0.274 

RP037* 28 4.431 0 0 4.884 3.757 -1.127 

RP040* 37 5.719 0 0 3.903 3.672 -0.231 

Obsevered pIC50 (Exp.), Predicted pIC50 (Pred.), residual (Res.) and test set is marked with (*) 

R
2
= 0.0039*5PathCount -0.0929*XlogP +0.5874*T_O_Br_6 +0.2666*3ChainCount +4.0602 

 

 
Table 3.8: Descriptor, experimental and predicted pIC50 values and their residuals 

for test set 2 compounds in HeLa QSAR model 

SWMD 
ACC NO. 

5PathCou
nt 

XlogP T_O_Br_6 
3ChainCo

unt 
Exp. Pred. Res. 

BD045 87 3.605 0 0 4.222 4.006 -0.216 

BD083 57 3.374 0 0 4.009 3.973 -0.036 

BD084 52 3.793 0 0 3.74 3.933 0.193 

RL004 87 6.274 0 1 4.089 4.092 0.003 

RL005 97 6.617 0 0 3.758 3.794 0.036 

RL006 206 10.302 2 2 
 

5.637 
 

RL009 44 5.645 0 0 3.69 3.78 0.09 

RL010 44 5.645 0 0 3.618 3.78 0.162 

RL012 51 3.979 0 0 3.916 3.918 0.002 

RL013 58 3.147 0 0 4.293 3.992 -0.301 

RL014 95 3.673 1 0 
 

4.696 
 

RL017 49 4.935 0 0 4.053 3.842 -0.211 

RL019 58 1.911 0 0 3.929 4.086 0.157 

RL020 58 1.911 0 0 3.812 4.086 0.274 

RL021 82 5.176 0 1 4.076 4.167 0.091 

RL022 74 4.464 0 0 
 

3.919 
 

RL023 56 5.731 0 0 3.976 3.793 -0.183 
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Table 3.8 continued 

SWMD 
ACC NO. 

5PathCou
nt 

XlogP T_O_Br_6 
3ChainCo

unt 
Exp. Pred. Res. 

RL281 70 3.174 0 0 4.094 4.01 -0.084 

RL282 70 3.174 0 0 4.108 4.01 -0.098 

RL283 95 2.637 0 0 3.919 4.092 0.173 

RL284 95 3.166 0 0 
 

4.052 
 

RL355 44 4.043 0 0 
 

3.901 
 

RL356 34 2.644 0 0 
 

3.990 
 

RL359 35 4.291 1 0 
 

4.550 
 

RL360 22 3.716 0 0 
 

3.889 
 

RL361 182 3.160 1 1 5.242 5.167 -0.075 

RL366 144 9.000 1 0 4.445 4.374 -0.071 

RL368 193 3.796 1 1 4.967 5.137 0.17 

RL371 161 4.242 1 0 4.934 4.762 -0.172 

RL374 186 3.160 1 1 5.242 5.174 -0.068 

RL378 175 2.524 1 1 4.899 5.204 0.305 

RL380 164 1.888 1 1 5.66 5.234 -0.426 

RL512 130 5.943 1 0 4.462 4.582 0.12 

RL513 133 5.356 1 0 4.638 4.632 -0.006 

RL515 121 2.778 1 0 4.585 4.807 0.222 

RP035 11 4.001 0 0 3.879 3.85 -0.029 

RP036 31 3.940 0 0 3.582 3.887 0.305 

RP037 28 4.431 0 0 4.884 3.845 -1.039 

RP039 33 5.229 0 0 3.441 3.793 0.352 

RP040 37 5.719 0 0 3.903 3.763 -0.14 

RP041 33 5.406 0 0 3.506 3.780 0.274 

RP042 37 5.542 0 0 3.55 3.776 0.226 

RL008* 87 5.972 0 1 3.941 4.115 0.174 

RL016* 45 4.355 0 0 4.393 3.879 -0.514 

RL286* 99 4.685 0 0 4.463 3.944 -0.519 

RL367* 155 3.115 1 1 6.168 5.126 -1.042 

RL377* 175 2.524 1 1 4.818 5.204 0.386 

RL514* 115 3.603 1 0 4.538 4.735 0.197 

RP034* 37 4.314 0 0 3.9 3.869 -0.031 

Obsevered pIC50 (Exp.), Predicted pIC50 (Pred.), residual (Res.) and test set is marked with (*) 

R
2
= 0.0016*5PathCount -0.0756*XlogP +0.6825*T_O_Br_6 +0.2883*3ChainCount +4.1343 
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Table 3.9: Descriptor, experimental and predicted pIC50 values and their residuals 
for test set 1 compounds in HT29 QSAR model 

SWMD 
ACC NO. 

SdssCE-
index 

SAAverag
eHydrop
hilicity 

T_2_2_4 chiV6chain Exp. Pred. Res. 

BD045 2.912 -0.010 0 0.034 4.168 4.931 0.763 

BS039 2.789 -0.029 1 0.104 5.248 5.958 0.710 

BT007 3.550 -0.020 0 0.126 
 

6.137 
 

BT009 2.931 -0.020 2 0.114 6.026 6.194 0.168 

BT010 1.207 -0.019 2 0.114 5.513 5.616 0.103 

BT012 1.226 -0.047 0 0.118 5.431 5.559 0.128 

RC002 -0.801 -0.048 8 0.088 5.770 6.138 0.368 

RG001 3.083 -0.071 0 0.133 
 

6.554 
 

RG003 2.486 -0.062 0 0.133 6.060 6.268 0.208 

RG004 1.577 -0.059 0 0.133 5.516 5.942 0.426 

RG005 2.488 -0.073 0 0.133 6.035 6.383 0.348 

RG006 1.584 -0.065 0 0.133 5.825 6.001 0.176 

RG007 1.289 -0.048 0 0.118 5.678 5.587 -0.091 

RG008 2.108 -0.019 0 0.118 5.962 5.569 -0.393 

RG009 1.235 -0.044 0 0.118 5.835 5.533 -0.302 

RG010 2.081 -0.002 2 0.114 5.462 5.735 0.273 

RG011 1.222 -0.018 2 0.114 5.462 5.604 0.142 

RG012 2.116 -0.017 0 0.118 6.141 5.558 -0.583 

RG014 2.072 -0.016 2 0.114 6.136 5.869 -0.267 

RL004 0.000 -0.022 0 0.069 4.106 4.426 0.320 

RL005 0.000 0.000 0 0.033 3.768 3.849 0.081 

RL006 0.000 -0.004 10 0.138 
 

6.839 
 

RL009 0.000 0.000 0 0.028 3.885 3.800 -0.085 

RL010 0.000 0.000 0 0.028 3.542 3.800 0.258 

RL125 0.000 -0.078 0 0.098 4.782 5.258 0.476 

RL128 1.047 -0.066 0 0.098 5.371 5.483 0.112 

RL129 1.172 -0.062 0 0.098 5.371 5.486 0.115 

RL130 1.914 -0.050 0 0.068 5.041 5.327 0.286 

RL132 0.607 -0.080 0 0.098 5.701 5.481 -0.220 

RL133 1.172 -0.060 0 0.098 5.690 5.467 -0.223 

RL135 0.353 -0.082 0 0.088 5.790 5.318 -0.472 

RL136 1.047 -0.064 0 0.098 5.070 5.466 0.396 

RL159 -0.210 -0.043 0 0.072 4.907 4.593 -0.314 
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Table 3.9 continued 

SWMD 
ACC NO. 

SdssCE-
index 

SAAverag
eHydrop
hilicity 

T_2_2_4 chiV6chain Exp. Pred. Res. 

RL160 -0.237 -0.032 0 0.072 4.152 4.473 0.321 

RL161 -0.485 -0.024 0 0.072 
 

4.306 
 

RL162 -0.126 -0.031 0 0.078 4.312 4.548 0.236 

RL164 -0.153 -0.018 0 0.083 4.793 4.463 -0.330 

RL165 0.000 0.000 0 0.088 4.903 4.390 -0.513 

RL166 0.000 0.000 0 0.088 
 

4.390 
 

RL167 0.000 -0.058 0 0.083 
 

4.919 
 

RL168 0.000 0.000 0 0.088 4.564 4.390 -0.174 

RL169 0.828 -0.039 0 0.059 
 

4.769 
 

RL170 0.828 -0.041 0 0.059 4.068 4.786 0.718 

RL171 0.428 -0.072 0 0.059 
 

4.960 
 

RL172 0.177 -0.018 0 0.076 4.724 4.509 -0.215 

RL355 -0.230 -0.024 1 0.000 
 

3.884 
 

RL356 0.000 -0.069 0 0.000 
 

4.212 
 

RL359 0.000 0.000 0 0.000 
 

3.530 
 

RL360 -0.208 -0.026 2 0.000 
 

4.102 
 

RL535 4.710 -0.061 2 0.074 6.523 6.811 0.288 

RL537 2.776 -0.074 2 0.071 7.177 6.269 -0.908 

RL538 2.443 -0.025 2 0.071 7.075 5.672 -1.403 

RL539 1.332 -0.051 2 0.071 5.777 5.557 -0.220 

RL540 1.388 -0.074 0 0.080 6.220 5.513 -0.707 

BT011* 2.913 -0.041 0 0.118 5.551 6.061 0.510 

RG013* 1.248 -0.053 0 0.118 5.877 5.622 -0.255 

RL008* 0.000 -0.015 0 0.069 4.006 4.354 0.348 

RL127* 1.047 -0.066 0 0.098 5.371 5.483 0.112 

RL131* 1.065 -0.061 0 0.132 5.371 5.776 0.405 

RL134* 0.353 -0.074 0 0.088 5.790 5.241 -0.549 

RL163* 0.000 -0.058 0 0.083 5.119 4.918 -0.201 

RL536* 2.776 -0.067 2 0.071 7.177 6.203 -0.974 

Obsevered pIC50 (Exp.), Predicted pIC50 (Pred.), residual (Res.) and test set is marked with (*) 

R
2
= 0.3328*SdssCE-index -9.9514*SAAverageHydrophilicity +0.1929*T_2_2_4 

+9.7350*chiV6chain +3.5298 
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Table 3.10: Descriptor, experimental and predicted pIC50 values and their residuals 

for test set 2 compounds in HT29 QSAR model 

SWMD 
ACC NO. 

SdssCE-
index 

SAAverag
eHydrop
hilicity 

T_2_2_4 chiV6chain Exp. Pred. Res. 

BD045 2.912 -0.010 0 0.034 4.168 4.854 0.686 

BS039 2.789 -0.029 1 0.104 5.248 5.810 0.562 

BT007 3.550 -0.020 0 0.126 
 

5.891 
 

BT009 2.931 -0.020 2 0.114 6.026 5.962 -0.064 

BT011 2.913 -0.041 0 0.118 5.551 5.947 0.396 

BT012 1.226 -0.047 0 0.118 5.431 5.549 0.118 

RC002 -0.801 -0.048 8 0.088 5.770 6.140 0.370 

RG001 3.083 -0.071 0 0.133 
 

6.522 
 

RG003 2.486 -0.062 0 0.133 6.060 6.228 0.168 

RG004 1.577 -0.059 0 0.133 5.516 5.935 0.419 

RG005 2.488 -0.073 0 0.133 6.035 6.390 0.355 

RG006 1.584 -0.065 0 0.133 5.825 6.017 0.192 

RG007 1.289 -0.048 0 0.118 5.678 5.576 -0.102 

RG008 2.108 -0.019 0 0.118 5.962 5.400 -0.562 

RG009 1.235 -0.044 0 0.118 5.835 5.511 -0.324 

RG010 2.081 -0.002 2 0.114 5.462 5.471 0.009 

RG011 1.222 -0.018 2 0.114 5.462 5.445 -0.017 

RG012 2.116 -0.017 0 0.118 6.141 5.383 -0.758 

RG013 1.248 -0.053 0 0.118 5.877 5.633 -0.244 

RL005 0.000 0.000 0 0.033 3.768 3.871 0.103 

RL006 0.000 -0.004 10 0.138 
 

6.487 
 

RL008 0.000 -0.015 0 0.069 4.006 4.367 0.361 

RL009 0.000 0.000 0 0.028 3.885 3.832 -0.053 

RL010 0.000 0.000 0 0.028 3.542 3.832 0.290 

RL127 1.047 -0.066 0 0.098 5.371 5.598 0.227 

RL128 1.047 -0.066 0 0.098 5.371 5.598 0.227 

RL130 1.914 -0.050 0 0.068 5.041 5.393 0.352 

RL131 1.065 -0.061 0 0.132 5.371 5.805 0.434 

RL132 0.607 -0.080 0 0.098 5.701 5.677 -0.024 

RL133 1.172 -0.060 0 0.098 5.690 5.552 -0.138 

RL134 0.353 -0.074 0 0.088 5.790 5.444 -0.346 

RL136 1.047 -0.064 0 0.098 5.070 5.574 0.504 
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Table 3.10 continued 

SWMD 
ACC NO. 

SdssCE-
index 

SAAverag
eHydrop
hilicity 

T_2_2_4 chiV6chain Exp. Pred. Res. 

RL159 -0.210 -0.043 0 0.072 4.907 4.726 -0.181 

RL160 -0.237 -0.032 0 0.072 4.152 4.560 0.408 

RL161 -0.485 -0.024 0 0.072 
 

4.371 
 

RL162 -0.126 -0.031 0 0.078 4.312 4.614 0.302 

RL163 0.000 -0.058 0 0.083 5.119 5.080 -0.039 

RL164 -0.153 -0.018 0 0.083 4.793 4.466 -0.327 

RL165 0.000 0.000 0 0.088 4.903 4.303 -0.600 

RL166 0.000 0.000 0 0.088 
 

4.303 
 

RL167 0.000 -0.058 0 0.083 
 

5.082 
 

RL168 0.000 0.000 0 0.088 4.564 4.303 -0.261 

RL169 0.828 -0.039 0 0.059 
 

4.861 
 

RL171 0.428 -0.072 0 0.059 
 

5.204 
 

RL172 0.177 -0.018 0 0.076 4.724 4.513 -0.211 

RL355 -0.230 -0.024 1 0.000 
 

4.062 
 

RL356 0.000 -0.069 0 0.000 
 

4.580 
 

RL359 0.000 0.000 0 0.000 
 

3.616 
 

RL360 -0.208 -0.026 2 0.000 
 

4.268 
 

RL535 4.710 -0.061 2 0.074 6.523 6.744 0.221 

RL536 2.776 -0.067 2 0.071 7.177 6.258 -0.919 

RL537 2.776 -0.074 2 0.071 7.177 6.351 -0.826 

RL539 1.332 -0.051 2 0.071 5.777 5.612 -0.165 

RL540 1.388 -0.074 0 0.080 6.220 5.679 -0.541 

BT010* 1.207 -0.019 2 0.114 5.513 5.465 -0.048 

RG014* 2.072 -0.016 2 0.114 6.136 5.663 -0.473 

RL004* 0.000 -0.022 0 0.069 4.106 4.468 0.362 

RL125* 0.000 -0.078 0 0.098 4.782 5.474 0.692 

RL129* 1.172 -0.062 0 0.098 5.371 5.580 0.209 

RL135* 0.353 -0.082 0 0.088 5.790 5.553 -0.237 

RL170* 0.828 -0.041 0 0.059 4.068 4.885 0.817 

RL538* 2.443 -0.025 2 0.071 7.075 5.570 -1.505 

Obsevered pIC50 (Exp.), Predicted pIC50 (Pred.), residual (Res.) and test set is marked with (*) 

R
2
= 0.2853*SdssCE-index -14.0530*SAAverageHydrophilicity +0.1747*T_2_2_4 

+7.7684*chiV6chain +3.616 
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Table 3.11: Descriptor, experimental and predicted pIC50 values and their residuals 

for test set 1 compounds in MCF7 QSAR model 

SWMD 
ACC NO. 

chiV5chain 6ChainCount T_O_Br_4 T_2_2_5 Exp. Pred. Res. 

BD032 0.068 0 0 0 3.867 3.591 -0.276 

BD033 0.063 1 0 3 4.213 4.092 -0.121 

BD034 0.063 0 0 3 3.437 3.820 0.383 

BD035 0.068 0 0 0 3.650 3.591 -0.059 

BD036 0.063 1 0 2 3.606 4.024 0.418 

BD037 0.048 0 0 0 3.606 3.688 0.082 

BD038 0.068 0 0 0 3.339 3.591 0.252 

BD039 0.051 1 0 4 4.139 4.215 0.076 

BD045 0.083 1 0 0 4.193 3.788 -0.405 

BL010 0.000 2 4 10 5.569 5.568 -0.001 

BL011 0.000 2 6 4 5.337 5.378 0.041 

BS020 0.119 2 0 0 
 

3.884 
 

RC002 0.031 3 0 10 5.377 5.259 -0.118 

RL004 0.072 2 0 0 4.064 4.114 0.050 

RL005 0.072 2 0 0 3.775 4.114 0.339 

RL006 0.144 4 0 8 
 

4.846 
 

RL008 0.072 2 0 0 3.983 4.114 0.131 

RL009 0.072 1 0 0 3.751 3.842 0.091 

RL012 0.072 1 0 0 3.695 3.842 0.147 

RL013 0.000 1 0 0 4.550 4.194 -0.356 

RL014 0.051 1 0 0 
 

3.945 
 

RL016 0.072 1 0 4 4.801 4.112 -0.689 

RL017 0.072 1 0 4 4.020 4.112 0.092 

RL019 0.000 1 0 2 
 

4.329 
 

RL020 0.000 1 0 2 
 

4.329 
 

RL022 0.072 2 0 0 
 

4.114 
 

RL023 0.072 1 0 4 4.106 4.112 0.006 

RL159 0.000 2 1 0 4.932 4.573 -0.359 

RL160 0.000 2 1 0 4.133 4.573 0.440 

RL161 0.000 2 1 0 
 

4.573 
 

RL162 0.000 2 0 0 4.281 4.466 0.185 

RL164 0.000 2 1 0 4.754 4.573 -0.181 

RL165 0.000 2 0 0 4.951 4.466 -0.485 
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Table 3.11 continued  

SWMD 
ACC NO. 

chiV5chain 6ChainCount T_O_Br_4 T_2_2_5 Exp. Pred. Res. 

RL166 0.000 2 0 0 
 

4.466 
 

RL167 0.000 2 1 0 
 

4.573 
 

RL168 0.000 2 0 0 4.499 4.466 -0.033 

RL169 0.029 1 0 0 
 

4.050 
 

RL170 0.029 1 0 0 4.051 4.050 -0.001 

RL171 0.029 1 0 0 
 

4.050 
 

RL172 0.000 2 0 0 4.706 4.466 -0.240 

RL282 0.000 2 0 2 3.868 4.600 0.732 

RL283 0.051 1 0 0 
 

3.945 
 

RL284 0.059 1 0 0 
 

3.907 
 

RL286 0.139 1 1 0 3.764 3.625 -0.139 

RL355 0.056 0 0 2 
 

3.786 
 

RL356 0.056 0 0 0 
 

3.652 
 

RL359 0.056 0 0 0 
 

3.652 
 

RL360 0.000 0 0 4 
 

4.192 
 

RR001 0.000 1 2 5 
 

4.745 
 

RR002 0.000 1 2 5 
 

4.745 
 

RR003 0.000 2 3 15 
 

5.798 
 

RR004 0.000 2 3 15 
 

5.798 
 

RR008 0.000 1 1 3 
 

4.503 
 

RR014 0.065 2 3 18 
 

5.686 
 

RR015 0.074 2 2 8 
 

4.858 
 

RR016 0.065 1 2 8 
 

4.633 
 

RR067 0.065 1 2 8 
 

4.633 
 

BD031* 0.068 0 0 0 3.886 3.591 -0.295 

BL004* 0.000 2 5 10 5.569 5.675 0.106 

RL010* 0.072 1 0 0 3.576 3.842 0.266 

RL021* 0.072 2 0 0 4.173 4.114 -0.059 

RL163* 0.000 2 1 0 5.013 4.573 -0.440 

RL281* 0.000 2 0 2 3.852 4.600 0.748 

Obsevered pIC50 (Exp.), Predicted pIC50 (Pred.), residual (Res.) and test set is marked with (*) 

R
2
= -4.8683*chiV5chain +0.2717*6ChainCount +0.1071*T_O_Br_4 +0.0673*T_2_2_5 +3.9220 

  



 

Anticancer potential of marine algae - a chemoinformatics approach  Page | 108 

 

Table 3.12: Descriptor, experimental and predicted pIC50 values and their residuals 

for test set 2 compounds in MCF7 QSAR model 

SWMD 
ACC NO. 

chiV5chain 6ChainCount T_O_Br_4 T_2_2_5 Exp. Pred. Res. 

BD031 0.068 0 0 0 3.886 3.573 -0.313 

BD033 0.063 1 0 3 4.213 4.075 -0.138 

BD034 0.063 0 0 3 3.437 3.772 0.335 

BD035 0.068 0 0 0 3.650 3.573 -0.077 

BD036 0.063 1 0 2 3.606 4.016 0.410 

BD037 0.048 0 0 0 3.606 3.656 0.050 

BD038 0.068 0 0 0 3.339 3.573 0.234 

BD039 0.051 1 0 4 4.139 4.182 0.043 

BD045 0.083 1 0 0 4.193 3.812 -0.381 

BL004 0.000 2 5 10 5.569 5.684 0.115 

BL010 0.000 2 4 10 5.569 5.557 -0.012 

BS020 0.119 2 0 0 
 

3.964 
 

RC002 0.031 3 0 10 5.377 5.223 -0.154 

RL004 0.072 2 0 0 4.064 4.162 0.098 

RL006 0.144 4 0 8 
 

4.935 
 

RL008 0.072 2 0 0 3.983 4.162 0.179 

RL009 0.072 1 0 0 3.751 3.858 0.107 

RL010 0.072 1 0 0 3.576 3.858 0.282 

RL012 0.072 1 0 0 3.695 3.858 0.163 

RL013 0.000 1 0 0 4.550 4.161 -0.389 

RL014 0.051 1 0 0 
 

3.947 
 

RL016 0.072 1 0 4 4.801 4.093 -0.708 

RL017 0.072 1 0 4 4.020 4.093 0.073 

RL019 0.000 1 0 2 
 

4.278 
 

RL020 0.000 1 0 2 
 

4.278 
 

RL021 0.072 2 0 0 4.173 4.162 -0.011 

RL022 0.072 2 0 0 
 

4.162 
 

RL159 0.000 2 1 0 4.932 4.591 -0.341 

RL160 0.000 2 1 0 4.133 4.591 0.458 

RL161 0.000 2 1 0 
 

4.591 
 

RL162 0.000 2 0 0 4.281 4.464 0.183 

RL163 0.000 2 1 0 5.013 4.591 -0.422 

RL164 0.000 2 1 0 4.754 4.591 -0.163 
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Table 3.12 continued 

SWMD 
ACC NO. 

chiV5chain 6ChainCount T_O_Br_4 T_2_2_5 Exp. Pred. Res. 

RL166 0.000 2 0 0 
 

4.464 
 

RL167 0.000 2 1 0 
 

4.591 
 

RL168 0.000 2 0 0 4.499 4.464 -0.035 

RL169 0.029 1 0 0 
 

4.037 
 

RL170 0.029 1 0 0 4.051 4.037 -0.014 

RL171 0.029 1 0 0 
 

4.037 
 

RL172 0.000 2 0 0 4.706 4.464 -0.242 

RL281 0.000 2 0 2 3.852 4.581 0.729 

RL283 0.051 1 0 0 
 

3.947 
 

RL284 0.059 1 0 0 
 

3.914 
 

RL286 0.139 1 1 0 3.764 3.705 -0.059 

RL355 0.056 0 0 2 
 

3.742 
 

RL356 0.056 0 0 0 
 

3.625 
 

RL359 0.056 0 0 0 
 

3.625 
 

RL360 0.000 0 0 4 
 

4.092 
 

RR001 0.000 1 2 5 
 

4.707 
 

RR002 0.000 1 2 5 
 

4.707 
 

RR003 0.000 2 3 15 
 

5.724 
 

RR004 0.000 2 3 15 
 

5.724 
 

RR008 0.000 1 1 3 
 

4.464 
 

RR014 0.065 2 3 18 
 

5.630 
 

RR015 0.074 2 2 8 
 

4.876 
 

RR016 0.065 1 2 8 
 

4.613 
 

RR067 0.065 1 2 8 
 

4.613 
 

BD032* 0.068 0 0 0 3.867 3.573 -0.294 

BL011* 0.000 2 6 4 5.337 5.458 0.121 

RL005* 0.072 2 0 0 3.775 4.162 0.387 

RL023* 0.072 1 0 4 4.106 4.093 -0.013 

RL165* 0.000 2 0 0 4.951 4.464 -0.487 

RL282* 0.000 2 0 2 3.868 4.581 0.713 

Obsevered pIC50 (Exp.), Predicted pIC50 (Pred.), residual (Res.) and test set is marked with (*) 

R
2
= -4.1901*chiV5chain +0.3032*6ChainCount +0.1265*T_O_Br_4 +0.0586*T_2_2_5 +3.8576 
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Table 3.13: Descriptor, experimental and predicted pIC50 values and their residuals 

for test set 1 compounds in P388 QSAR model 

SWMD 
ACC NO. 

chi6chain T_O_O_2 T_2_O_4 3ChainCount Exp. Pred. Res. 

BS051 0.068 0 5 0 4.375 4.476 0.101 

BS052 0.114 0 6 0 5.551 5.282 -0.269 

BT007 0.155 0 0 0 
 

6.355 
 

BT009 0.146 0 2 0 5.850 6.084 0.234 

BT010 0.146 0 3 0 5.757 6.031 0.274 

BT012 0.146 0 2 0 6.059 6.084 0.025 

RG001 0.155 0 1 0 
 

6.301 
 

RG003 0.155 0 2 0 6.281 6.248 -0.033 

RG004 0.155 0 2 0 6.277 6.248 -0.029 

RG005 0.155 0 1 0 6.046 6.301 0.255 

RG007 0.146 0 1 1 5.743 5.887 0.144 

RG008 0.146 0 2 0 6.292 6.084 -0.208 

RG009 0.146 0 2 0 6.187 6.084 -0.103 

RG010 0.146 0 3 0 5.908 6.031 0.123 

RG011 0.146 0 3 0 5.908 6.031 0.123 

RG012 0.146 0 1 0 6.339 6.138 -0.201 

RG013 0.146 0 1 0 6.472 6.138 -0.334 

RG014 0.146 0 2 0 6.572 6.084 -0.488 

RL064 0.000 0 2 1 
 

3.127 
 

RL065 0.160 0 0 0 5.538 6.436 0.898 

RL078 0.169 0 0 0 6.004 6.609 0.605 

RL079 0.169 0 0 0 
 

6.609 
 

RL125 0.169 0 0 0 7.796 6.609 -1.187 

RL127 0.169 0 1 0 7.770 6.555 -1.215 

RL129 0.169 0 2 0 6.367 6.502 0.135 

RL130 0.118 1 3 0 5.662 5.289 -0.373 

RL131 0.228 0 1 0 7.770 7.645 -0.125 

RL133 0.169 0 2 0 6.071 6.502 0.431 

RL134 0.169 0 2 0 6.398 6.502 0.104 

RL136 0.169 0 1 0 5.770 6.555 0.785 

RL323 0.169 1 1 0 
 

6.340 
 

RL324 0.169 0 0 0 
 

6.609 
 

RL325 0.169 2 2 0 6.123 6.072 -0.051 

RL326 0.169 1 1 0 6.334 6.340 0.006 

RL361 0.132 3 2 1 5.190 4.928 -0.262 

RL366 0.098 2 7 0 4.445 4.497 0.052 

RL368 0.132 4 2 1 4.837 4.713 -0.124 

RL371 0.132 3 3 0 4.738 5.125 0.387 

RL377 0.132 2 2 1 5.207 5.143 -0.064 
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Table 3.13 continued 

SWMD 
ACC NO. 

chi6chain T_O_O_2 T_2_O_4 3ChainCount Exp. Pred. Res. 

RL378 0.132 2 2 1 4.835 5.143 0.308 

RL535 0.093 0 1 0 5.523 5.151 -0.372 

RL536 0.106 0 1 0 5.575 5.396 -0.179 

RL538 0.106 0 1 0 5.473 5.396 -0.077 

RL539 0.106 0 1 0 4.777 5.396 0.619 

RL540 0.085 0 1 0 4.919 5.005 0.086 

BT011* 0.146 0 1 0 5.676 6.138 0.462 

RG006* 0.155 0 1 0 6.427 6.301 -0.126 

RL128* 0.169 0 1 0 7.770 6.555 -1.215 

RL132* 0.169 0 1 0 6.081 6.555 0.474 

RL135* 0.169 0 2 0 7.796 6.502 -1.294 

RL367* 0.132 1 2 1 5.603 5.358 -0.245 

RL374* 0.132 3 2 1 5.372 4.928 -0.444 

RL380* 0.132 1 2 1 5.405 5.358 -0.047 

RL537* 0.106 0 1 0 5.575 5.396 -0.179 

Obsevered pIC50 (Exp.), Predicted pIC50 (Pred.), residual (Res.) and test set is marked with (*) 

R
2
= 18.4947 *chi6chain -0.2150*T_O_O_2 -0.0535*T_2_O_4 -0.2514*3ChainCount +3.4853 

 

 
Table 3.14: Descriptor, experimental and predicted pIC50 values and their residuals 

for test set 2 compounds in P388 QSAR model 

SWMD 
ACC NO. 

chi6chain T_O_O_2 T_2_O_4 3ChainCount Exp. Pred. Res. 

BS051 0.068 0 5 0 4.375 4.472 0.097 

BS052 0.114 0 6 0 5.551 5.386 -0.165 

BT007 0.155 0 0 0 
 

6.412 
 

BT010 0.146 0 3 0 5.757 6.133 0.376 

BT011 0.146 0 1 0 5.676 6.199 0.523 

BT012 0.146 0 2 0 6.059 6.166 0.107 

RG001 0.155 0 1 0 
 

6.379 
 

RG003 0.155 0 2 0 6.281 6.346 0.065 

RG004 0.155 0 2 0 6.277 6.346 0.069 

RG006 0.155 0 1 0 6.427 6.379 -0.048 

RG007 0.146 0 1 1 5.743 6.082 0.339 

RG008 0.146 0 2 0 6.292 6.166 -0.126 

RG009 0.146 0 2 0 6.187 6.166 -0.021 

RG010 0.146 0 3 0 5.908 6.133 0.225 

RG011 0.146 0 3 0 5.908 6.133 0.225 

RG012 0.146 0 1 0 6.339 6.199 -0.140 

RG013 0.146 0 1 0 6.472 6.199 -0.273 

RG014 0.146 0 2 0 6.572 6.166 -0.406 
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Table 3.14 continued 

SWMD 
ACC NO. 

chi6chain T_O_O_2 T_2_O_4 3ChainCount Exp. Pred. Res. 

RL064 0.000 0 2 1 
 

3.067 
 

RL065 0.160 0 0 0 5.538 6.501 0.963 

RL078 0.169 0 0 0 6.004 6.692 0.688 

RL079 0.169 0 0 0 
 

6.692 
 

RL125 0.169 0 0 0 7.796 6.692 -1.104 

RL128 0.169 0 1 0 7.770 6.659 -1.111 

RL129 0.169 0 2 0 6.367 6.626 0.259 

RL130 0.118 1 3 0 5.662 5.312 -0.350 

RL131 0.228 0 1 0 7.770 7.860 0.090 

RL132 0.169 0 1 0 6.081 6.659 0.578 

RL134 0.169 0 2 0 6.398 6.626 0.228 

RL135 0.169 0 2 0 7.796 6.626 -1.170 

RL323 0.169 1 1 0 
 

6.418 
 

RL324 0.169 0 0 0 
 

6.692 
 

RL325 0.169 2 2 0 6.123 6.144 0.021 

RL326 0.169 1 1 0 6.334 6.418 0.084 

RL366 0.098 2 7 0 4.445 4.540 0.095 

RL367 0.132 1 2 1 5.603 5.521 -0.082 

RL368 0.132 4 2 1 4.837 4.798 -0.039 

RL371 0.132 3 3 0 4.738 5.123 0.385 

RL374 0.132 3 2 1 5.372 5.039 -0.333 

RL380 0.132 1 2 1 5.405 5.521 0.116 

RL535 0.093 0 1 0 5.523 5.111 -0.412 

RL536 0.106 0 1 0 5.575 5.381 -0.194 

RL537 0.106 0 1 0 5.575 5.381 -0.194 

RL539 0.106 0 1 0 4.777 5.381 0.604 

RL540 0.085 0 1 0 4.919 4.950 0.031 

BT009* 0.146 0 2 0 5.850 6.166 0.316 

RG005* 0.155 0 1 0 6.046 6.379 0.333 

RL127* 0.169 0 1 0 7.770 6.659 -1.111 

RL133* 0.169 0 2 0 6.071 6.626 0.555 

RL136* 0.169 0 1 0 5.770 6.659 0.889 

RL361* 0.132 3 2 1 5.190 5.039 -0.151 

RL377* 0.132 2 2 1 5.207 5.280 0.073 

RL378* 0.132 2 2 1 4.835 5.280 0.445 

RL538* 0.106 0 1 0 5.473 5.381 -0.092 

Obsevered pIC50 (Exp.), Predicted pIC50 (Pred.), residual (Res.) and test set is marked with (*) 

R2= 203782 *chi6chain -0.2409*T_O_O_2 -0.0328*T_2_O_4 -0.1173*3ChainCount 

+3.2500 
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Figure 3.7: Distribution of IC50 value among cell lines  

 

 

Figure 3.8: Effect of number of descriptors on the correlation coefficient 
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3.9 Results and Discussion 

 The predictive models were built for six different cancer cell lines with 

experimental data from 157 compounds, employing independent and least number of 

descriptors. The distribution of IC50 values amoung the six cell lines was seen to differ 

from one compound to another and is shown Figure 3.7. Selection of the best model was 

based on the values of correlation coefficient obtained from the correlation of 

approximately 630 descriptors in different combinations. The effect of a number of 

descriptors on the correlation coefficient values for all the models were tested on training 

set by correlating 1-10 descriptors separately and presented in Figure 3.8. It was 

observed that in various models, four descriptors are sufficient for getting a good 

correlation and using more than four descriptors make only small effect on the statistical 

quality of the models in most cases. Although more than seven descriptor-based models 

may provide high correlation and cross-validation coefficient values, however, this may be 

false and thus may not be very useful for the further prediction of IC50 values. Before the 

division of training and test set of compounds three, four and five, descriptor-based 

models were selected. While comparing the statistical performance of the selected 

models, four descriptor-based models were found to be optimum as they provide very 

acceptable correlation in most cases. 

 In order to assess and compare the predictive power and the stability of QSAR 

models, various statistical measures were adapted in the present study which is also 

widely applied for evolution of a significant model. Number of molecules in the training set 

was more than 20, as four descriptors were sufficient for getting a good correlation. R2 is 

the square of the correlation coefficient and represents the statistical significance of the 

model, herein all the models in the study were inferred significant if R2 is greater than 0.7. 

While Q2 is the cross-validated R2, a measure of the quality of the QSAR model was 

inferred significant if Q2 is greater than 0.5. F is the Fischer statistics, the ratio between 

explained and unexplained variance for a given number of degrees of freedom, thereby 



 

Anticancer potential of marine algae - a chemoinformatics approach  Page | 115 

 

indicating a factual correlation or the significance level for QSAR models. Higher the F-

test more significant is the model. AE is the average of absolute difference between 

experimental and predicted IC50 values; lower the AE, more significant in the model. 

 

Figure 3.9: Regression summary of QSAR models. 
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are also reasonable (R2 ~ 0.70, Q2 ~ 0.60), and extra care is required before utilizing 

these models for the prediction. However, the statistical quality of A549 (Lung) cell lines 

cannot be used for the prediction because of the insignificant statistical results obtained 

for this model (R2 = 0.67, Q2 = 0.50). The reason for poor result is probably due to the 

involvement of diverse compound types in this model. The increase in the number of 

descriptors for A549 does improve the quality of the model (with 10 descriptors R2 ~ 0.78) 

and indicates that the currently used descriptors are good enough for developing the 

structure-activity relationship for this model. 

 Distribution of IC50 values of compounds among the cell lines also complements 

the statistical quality of QSAR. IC50 values for HeLa and MCF-7 cell lines are for a broad 

range wherein the predictions show good statistical quality. The range of IC50 values for 

A431, HT29 and P388 cell lines are reasonable and so also the QSAR prediction. IC50 

values of A549 cell lines are in narrow range <50 μM and so is the quality of the QSAR 

model (Figure 3.7). 

 Outliers are those compounds which are unable to fit in the developed QSAR 

models. Although most of these QSAR models do not have any outlier, in some cases a 

maximum of one outlier is present because of its higher deviation between the observed 

and predicted activities. The occurrence of outliers is not only due to the possibility that 

the compound may act by different mechanisms or interact with the receptor in different 

binding modes but also due to the intrinsic noise associated with both the original data 

and methodological aspects opted for the construction of models. Compound RL018 (2-

tridecyl-2-heptadecenal) which is an outlier in A431, HeLa and MCF7 QSAR models is an 

aliphatic hydrocarbon whereas the other compounds have aromatic rings.   

 Figure 3.10 represent the plot between the experimental and predicted IC50 values 

for training and test set of all QSAR models. The average residual for test and training set 

compounds presented in this figure clearly shows that the compounds of the test set are 

closer to the line compared with the compounds of training set. Rigorous validation for the 
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applicability of generated QSAR models was done by dividing another independent test 

set. As per the expectations, the statistical performance of the second test set is similar to 

that of the first test set. Both the test sets revealed similar statistical performance 

indicating that the developed models are adequate. The observed and predicted activities 

with residuals and descriptors values are presented in Figure 3.11, for all the developed 

models for the second set of test compounds.  

 In the developed QSAR models, 22 descriptors (14 Physicochemical and 8 

Baumann’s Alignment independent) were used in different combinations. Figure 3.12 

depicts the details of all the 22 descriptors, its type and occurrence in the models. The 

details of the descriptors involved in the study and their occurance in the QSAR models is 

shown in Table 3.16. The inter-correlation of the descriptors appeared in all the 

developed models were taken into account, and the descriptors were found to be 

reasonably orthogonal (Table 3.17).  All models have identified alignment independent 

descriptors as vital descriptors. The ‘atom and bond count’ descriptors especially number 

of Oxygen, Bromine and Chlorine atoms is chosen in most models. It is well known that 

the seaweed metabolites are biologically active due to the high degree of halogenations 

thereby exhibiting antibacterial, antifungal, antiviral, anti-inflammatory, antiproliferative, 

cytotoxic, antifouling, antifeedant, ichthyotoxic, and/or insecticidal activity (Lhullier et al. 

2009).  The same is reflected in the obtained descriptors as halogenation of molecules 

increases the cytotoxic activity and is also proved.  

 Chain path count descriptors (such as 3ChainCount, 5ChainCount, 6ChainCount), 

retention index and atomic valence connectivity index also were identified in the models. 

The maximum six membered rings positively influence the activity and percentage 

contribution in most of the models (Figure 3.13). The Hydrophobicity SlogpA descriptors 

which is the hydrophilic value on the Van der Waals surface of molecules decreases the 

anticancer activity of compounds. The other descriptors include Estate contributions 

which are the Electrotopological state indices of valency of C atoms and bond order. 
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Table 3.15: Regression summary for all the QSAR models  

Cell line 
(Type) 

# Compounds 
Regression equation R2 Q2 AE F 

TR TS PD O 

A431 
24 4 12 1 

= -0.2967*5ChainCount +0.2105*SsssCHE-index -

0.1817*T_2_Br_5 +0.3143*T_O_Br_4 +4.1884 

0.74 0.60 0.15 13.76 

(Epithelial) 0.73 0.51 0.16 12.67 

A549 

46 9 17 0 
= -0.1969*SaaCHE-index +1.1969*T_2_Cl_1 

+0.5973*chiV3Cluster -3.2011*SAMostHydrophilic +4.5436 

0.67 0.50 0.23 21.16 

(Lung) 0.65 0.47 0.25 18.95 

HeLa 

34 7 8 1 
= 0.0039*5PathCount -0.0929*XlogP +0.5874*T_O_Br_6 

+0.2666*3ChainCount +4.0602 

0.79 0.67 0.21 27.83 

(Cervical) 0.78 0.71 0.19 25.74 

HT29 
42 8 12 0 

= 0.3328*SdssCE-index -9.9514*SAAverageHydrophilicity 

+0.1929*T_2_2_4 +9.7350*chiV6chain +3.5298 

0.73 0.58 0.35 25.39 

(Colon) 0.78 0.61 0.32 32.46 

MCF7 
31 6 26 1 

= -4.8683*chiV5chain +0.2718*6ChainCount 

+0.1071*T_O_Br_4 +0.0674*T_2_2_5 +3.9220 

0.74 0.67 0.22 18.40 

(Breast) 0.77 0.69 0.22 21.16 

P388 
39 9 6 0 

= 18.4947 *chi6chain -0.2150*T_O_O_2 -0.0535*T_2_O_4 -

0.2514*3ChainCount +3.4853 

0.73 0.67 0.29 22.98 

(Leukemia) 0.72 0.66 0.32 21.52 

Cell line with type of cancer in parenthesis, regression summary (regression equation, correlation coefficient (R
2
), cross validation coefficient (Q

2
), 

average residual (AE) and number of outliers (O) and number of compounds (training set (TR), test set (TS) and predicted set (PD)) in various cell lines 

based QSAR models for both the test set 
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Figure 3.10: Plot between experimental and predicted IC50 values for training and test set (1) QSAR models 

Correlation coefficient (R
2
), Cross-validation coefficient (Q

2
), Average residual Training set (AETR), Average residual Test set (AETS) 
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Figure 3.11: Plot between experimental and predicted IC50 values for training and test set (2) QSAR models 

Correlation coefficient (R
2
), Cross-validation coefficient (Q

2
), Average residual Training set (AETR), Average residual Test set (AETS) 
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Figure 3.12: Classification of various descriptors involved in QSAR model 
 

 

4%  

Individual 
XlogP 

14% 
Chain Path count 

3ChainCount 
5ChainCount 
6ChainCount  4% Path Count 

5PathCount 
5% Chi Chain 

chi6chain 

5% Cluster 
chiV3Cluster 

9% 
Chiv Chain 
chiV5chain  
chiV6chain  

9% 
Hydrophobicity SlogpA 
SAAverageHydrophilicit

y SAMostHydrophilic  

14% 
Estate contributions 

SaaCHE-index  
SdssCE-index  

SsssCHE-index  

36% 
ALIGNMENT 

INDEPENDENT 
T_2_2_4,  T_2_2_5 

T_2_Br_5 , T_2_Cl_1 
T_2_O_4 , T_O_Br_4 
T_O_Br_6 , T_O_O_2  

PHYSICOCHEMICAL 



 

Anticancer potential of marine algae - a chemoinformatics approach  Page | 122 

 

Table 3.16: Details of the descriptors involved in the QSAR study 
 

Nature Descriptors Full Name of the Descriptors QSAR Model 

PHYSICOCHEMICAL 
   

Individual XlogP 
Ratio of solute concentration in octanol & water and generally termed 
as Octanol Water partition Coefficient 

HeLa 

Chain Path count 3ChainCount Total number three membered rings in a compound HeLa, P388 

Chain Path count 5ChainCount Total number five membered rings in a compound A431 

Chain Path count 6ChainCount Total number six membered rings in a compound MCF7 

Path Count 5PathCount 
Total number of fragments of fifth order (five bond path) in a 
compound 

HeLa 

Chi Chain chi6chain A retention index for six membered ring P388 

Cluster chiV3Cluster Valence molecular connectivity index of 3rd order cluster A549 

Chiv Chain chiV5chain Atomic valence connectivity index for five membered ring MCF7 

Chiv Chain chiV6chain Atomic valence connectivity index for six membered ring HT29 

Hydrophobicity SlogpA SAAverageHydrophilicity 
Most hydrophilic value on the vdW surface. (By Audry Method using 
Slogp) 

HT29 

Hydrophobicity SlogpA SAMostHydrophilic 
Most hydrophilic value on the vdW surface. (By Audry Method using 
Slogp) 

A549 
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Table 3.16 continued 
 

Nature Descriptors Full Name of the Descriptors QSAR Model 

Estate contributions SaaCHE-index 
Electrotopological state indices for number of –CH group connected 
with two aromatic bonds 

A549 

Estate contributions SdssCE-index 
Electrotopological state indices for number of carbon atom connected 
with one double and two single bonds 

HT29 

Estate contributions SsssCHE-index 
Electrotopological state indices for number of –CH group connected 
with three single bonds 

A431 

ALIGNMENT INDEPENDENT 
  

 
T_2_2_4 

Count of number of double bounded atoms separated from any other 
double bonded atom by 4 bonds in a molecule 

HT29 

 
T_2_2_5 

Count of number of double bounded atoms separated from any other 
double bonded atom by 5 bonds in a molecule 

MCF7 

 
T_2_Br_5 

Count of number of double bounded atoms separated from Bromine 
atom by 5 bonds 

A431 

 
T_2_Cl_1 

Count of number of double bounded atoms separated from Chlorine 
atom by 1 bond 

A549 

 
T_2_O_4 

Count of number of double bounded atoms separated from Oxygen 
atom by 4 bonds 

P388 

 
T_O_Br_4 

Count of number of Oxygen atoms separated from any Bromine atom 
by 4 bond distance in a molecule 

A431, MCF7 

 
T_O_Br_6 

Count of number of Oxygen atoms separated from any Bromine atom 
by 6 bond distance in a molecule 

HeLa 

 
T_O_O_2 

Count of number of Oxygen atoms separated from any other Oxygen 
atom by 2 bonds in a molecule 

P388 
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Figure 3.13: Percentage Contribution of each descriptor in developed QSAR model explaining variation in the activity 
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Table 3.17: Analysis of Inter-correlation of the descriptors along with correlation of activity for the test set (R2
pred) 

 

Cell line R2 pred D1 D2 D3 D4   D1 D2 D3 D4 

A431 0.77 5ChainCount SsssCHE-index T_2_Br_5 T_O_Br_4 

D1 1.00 -0.05 0.17 -0.45 

D2 -0.05 1.00 0.01 0.18 

D3 0.17 0.01 1.00 -0.07 

D4 -0.45 0.18 -0.07 1.00 

A549 0.51 SaaCHE-index T_2_Cl_1 chiV3Cluster 
SAMostHydrop

hilic 

D1 1.00 -0.09 -0.12 0.19 

D2 -0.09 1.00 -0.03 -0.01 

D3 -0.12 -0.03 1.00 0.04 

D4 0.19 -0.01 0.04 1.00 

HeLa 0.55 5PathCount XlogP T_O_Br_6 3ChainCount 

D1 1.00 -0.15 0.90 0.65 

D2 -0.15 1.00 -0.06 -0.20 

D3 0.90 -0.06 1.00 0.47 

D4 0.65 -0.20 0.47 1.00 

HT29 0.67 SdssCE-index 
SAAverageHyd

rophilicity 
T_2_2_4 chiV6chain 

D1 1.00 -0.17 0.08 0.31 

D2 -0.17 1.00 0.04 -0.34 

D3 0.08 0.04 1.00 0.04 

D4 0.31 -0.34 0.04 1.00 

MCF7 0.71 chiV5chain 6ChainCount T_O_Br_4 T_2_2_5 

D1 1.00 -0.53 -0.33 -0.10 

D2 -0.53 1.00 0.28 0.26 

D3 -0.33 0.28 1.00 0.39 

D4 -0.10 0.26 0.39 1.00 

P388 0.59 chi6chain T_O_O_2 T_2_O_4 3ChainCount 

D1 1.00 -0.14 -0.42 -0.09 

D2 -0.14 1.00 0.24 0.63 

D3 -0.42 0.24 1.00 -0.04 

D4 -0.09 0.63 -0.04 1.00 

 
Test set (R

2
pred), Descriptor 1, 2, 3 & 4 (D1, D2, D3, D4) 
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3.10 Conclusion  

 QSAR studies are statistically derived models that can be used to predict the 

physicochemical and biological (including toxicological) properties of molecules from the 

knowledge of chemical structure. In the present study, the predictive power of QSAR 

approaches to model anticancer compounds was assessed. A total of six QSAR models, 

for six different cell lines with 157 compounds from SWMD were built to assess the 

predictive power of QSAR models for anticancer activity. Although analysis was done with 

various models where the number of descriptors is increased from 1 to 10, it is interesting 

to note that in most cases 4 descriptor-based models are adequate. The molecular 

descriptor analysis revealed the key role of Baumann’s alignment independent topological 

descriptors along with other descriptors such as the number of three, five and six 

membered rings, molecular branching (chiV3Cluster), alkene carbon atom type (SdssCE-

index and SsssCHE-index) in governing activity variation. In addition, this study suggests 

the role of Oxygen, Bromine and Chlorine atoms and aromatic carbon (SaaCHE-index) 

atoms electro-topological environment that differentiate molecules anticancer activity. The 

study reiterates that the cytotoxicity of seaweed metabolites is due to the halogenations 

of the compounds followed by the cyclic ring based descriptors. It is noteworthy that these 

descriptors are human interpretable and are able to explain the cytotoxic activity of the 

seaweed compounds. Such features can thus be used to design and synthesize a new 

compound with potency and specificity. 

 Assumptions about the site of interaction or mechanism of action of these 

compounds were not made, yet were able to develop statistically robust models for all 

experimentally tested compounds wherein the correlation coefficient (R2) and cross-

validation coefficient (Q2) values are higher and average residuals (AE) are lower in most 

cases. Cell lines HeLa and MCF-7 showed good statistical quality (R2 ~ 0.75, Q2 ~ 0.65) 

followed by A431, HT29 and P388 cell lines with reasonable statistical values (R2 ~ 0.70, 

Q2 ~ 0.60). Thus it is concluded that the developed models can be used for modelling 

anticancer compounds for the above cell lines. 



 

  

 

 

 

 

 

At God's command 

amazing things 

happen, wonderful 

things that we can't 

understand. 
JOB 37:5 

Chapter 4 

INHIBITORS OF PROTEIN KINASE B 

AS ANTICANCER AGENTS 

 

 

 

 

 



 

Anticancer potential of marine algae - a chemoinformatics approach  Page | 127 

 

Chapter 4 

INHIBITORS OF PROTEIN KINASE B AS ANTICANCER AGENTS  

4.1 Introduction 

 A protein kinase is a kinase enzyme that modifies other proteins by chemically 

adding phosphate groups to them (phosphorylation). Phosphorylation usually results in a 

functional change of the target protein (substrate) by changing enzyme activity, cellular 

location, or association with other proteins. The human genome contains about 500 

protein kinase genes and they constitute about 2% of all human genes (Manning et al 

2002). Up to 30% of all human proteins may be modified by kinase activity, and are also 

found in bacteria and plants. Kinases are the key players in cell signaling pathways that 

transduct signals from growth factor receptors for cell growth or apoptosis by 

phosphorylation of their substrates which are mostly downstream kinases involved in cell 

signaling processes themselves (Cohen 2002). Among the signaling proteins that 

respond to a large variety of signals, protein kinase B (PKB, also known as Akt) appears 

to be a central player in the regulation of metabolism, cell survival, motility, transcription 

and cell-cycle progression.  

 Akt was originally identified by Stephen Staal in 1987 as the likely transforming 

gene component, v-Akt, of the Akt8 provirus (Staal 1987). In the same study Staal 

identified the human homologue of v-Akt, Akt1, which was amplified twenty-fold in a 

gastric adenocarcinoma. Conserved from primitive metazoans to humans, PKB belongs 

to the AGC subfamily of the protein kinase superfamily, which consists of 518 members in 

humans (Manning et al 2002). Akt is a part of AGC (cAMP-dependent (A),cGMP-

dependent (G), and phospholipid-dependent (C)) family of kinases which have a long 

history as cytoplasmic serine/threonine kinases that are regulated by secondary 

messengers. Because it bears high homology to protein kinase A (PKA) and protein 

kinase C (PKC), Akt is also referred to as protein kinase B (PKB). Akt consists of three 

different cellular isoforms, namely, Akt1 (PKBα), Akt2 (PKBβ), and Akt3 (PKBγ). Being 
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approximately 80 percent identical, these isozymes have a highly conserved domain 

structure; an N-terminal pleckstrin homology (PH) domain, a kinase domain and a C-

terminal regulatory tail containing a hydrophobic motif (Kumar et al 2001). The kinase 

domains have a large homology of more than 85% and the binding pocket residues are 

the same.  This architecture is conserved among species from fly, worm, mouse to man 

(Figure 4.1). 

 

  

Figure 4.1: PKB/Akt family phylogeny and structural variations (Fayard et al. 2005) 
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4.2 Regulation of Protein Kinase B 

 Akt1 has a wide tissue distribution and is implicated in cell growth and survival 

(Cho et al. 2001), whereas Akt2 is highly expressed in muscle and adipocytes and 

contributes to insulin-mediated regulation of glucose homeostasis (Garofalo et al. 2003). 

The distribution of Akt3 is more restricted with expression mainly found in the testes and 

brain (Yang et al. 2003).  

 Akt is one of the key molecules activated downstream of the PI3 kinase signalling 

pathway. Akt is normally maintained in an inactive state through an intramolecular 

interaction between the PH and kinase domains (Calleja et al. 2007). However, the 

interaction between the PH domain of Akt and 3-phosphinositides induces a 

conformational change in Akt, which enables co-recruited PDK1 to access the activation 

loop and phosphorylate Thr308 (Figure 4.2). Phosphorylation of Thr308 increases Akt 

activity by about 100-fold, but maximal Akt activity also requires phosphorylation of 

Ser473 in the hydrophobic motif by members of the PIKK (PI3 kinase-related kinase) 

superfamily like mTORC2 (mammalian target of rapamycin complex 2) (Bozulic & 

Hemmings 2009). Upon Akt phosphorylation and activation, Akt dissociates from the 

membrane and translocates to the cytosol and nucleus where it activates downstream 

signalling pathways through phosphorylation of a plethora of Akt substrates.  

 Akt signalling is terminated by dephosphorylation of Thr308 and Ser473 through 

the action of PP2 (protein phosphatase 2) and PHLPP (PH domain leucine- rich repeat 

phosphatase), respectively (Brognard et al. 2007). It was found that mTOR inhibitors 

torin1, PP242 and Ku-0063794 blocked Ser473 phosphorylation in human platelets with 

no effect on Thr308 phosphorylation, Akt1 activity or GSK3β phosphorylation but in 

contrast, Akt2 activity and PRAS40 phosphorylation were significantly reduced (Moore, 

Hunter & Hers 2011). Akt regulates many cellular processes mediated through serine 

and/or threonine phosphorylation of a range of downstream substrates. 
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Figure 4.2: Activation and regulation of PKB 

 

Receptor tyrosine kinases (RTKs) are activated by the binding of growth factors (GFs) to the 

extracellular domain. This results in receptor autophosphorylation and an increase in kinase 

activity. Class I phosphoatidylinositol 3-kinase (PI3K) bind either directly or through an adaptor 

protein to the activated receptor. PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate 

(PIP2) to generate phosphatidylinositol-3,4,5-bisphosphate (PIP3). This reaction can be reversed 

by the action of PTEN (phosphatase and tensin homology). Akt is normally maintained in an 

inactive state through an intramolecular interaction between the PH and kinase domains. 

However, the interaction between the PH domain of Akt and 3-phosphinositides induces a 

conformational change in Akt, which enables co-recruited PDK1 to access the activation loop and 

phosphorylate Thr308. Dephosphorylation of this site is regulated by protein phosphatase 2A 

(PP2A). mTOR complex 2 (mTORC2) phosphorylates Akt in the hydrophobic motif on Ser473 in a 

PI3 kinase dependent manner. Dephosphorylation of Ser473 is regulated by the phosphatase 

PHLPP. Activated, Akt dissociates from the membrane and phosphorylates a wide range of 

substrates (Hers, Vincent & Tavaré 2011). 
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4.3 Role of Protein Kinase B in Cancer 

 Overactivation of Akt can influence many downstream effectors and mediate 

multiple pathways that favour tumourigenesis (such as cell survival, cell growth and cell 

proliferation) and as such it is one of the most frequently hyperactivated protein kinases in 

human cancer (Altomare & Testa 2005). Almost all known oncogenic growth factors, 

angiogenic factors and cytokines activate Akt and it is unique in that all major elements of 

the pathway have been found to be mutated or amplified in a broad range of cancers 

(Yuan & Cantley 2008). 

 All three Akt isoforms have the ability to transform cells in vitro, however, Akt2 is 

the major isoform found to be amplified or overexpressed in human cancer. This has 

been observed in 10% of pancreatic tumours, 40% of hepatocellular carcinomas and 57% 

of colorectal cancers. The Akt1 gene is not frequently amplified, indeed only one case in 

human gastric cancer has been observed. Similarly, amplification of the Akt3 gene has 

not been reported in human cancer although Akt3 mRNA was upregulated in oestrogen 

receptor negative breast tumours and activity was concomitantly increased. Increased Akt 

signalling has been correlated with poor clinical outcome in many tumour types including; 

melanoma, breast, prostate, endometrial, gastric, pancreatic and brain (Hers, Vincent & 

Tavaré 2011). 

 Recently Carpten et al. (2007) identified a mutation in the PH domain of Akt1, 

which leads to association of Akt with the plasma membrane and constitutive activation. 

They identified the somatic mutation in human breast, colorectal and ovarian cancers as 

a glutamic acid to lysine substitution at amino acid 17 (E17K). Despite being part of one 

of the most frequently activated survival pathways in human cancer, mutation in Akt itself 

is extremely rare, therefore dysregulation of the pathway more commonly results from 

mutation or altered expression of an upstream regulator of Akt activity. 

 Overexpression or activating mutation of tyrosine kinase receptors and their 

ligands, such as Epidermal growth factor receptor (EGFR), Human Epidermal Growth 



 

Anticancer potential of marine algae - a chemoinformatics approach  Page | 132 

 

Factor Receptor 2 (HER2) and Platelet-derived growth factor (PDGF) have been 

observed in human cancer, all of which may lead to the activation of Akt. Downstream Akt 

signalling can also be increased in malignant cells due to increased concentration of 

ligands and decreased receptor turnover, which results in more activated receptors at the 

cell surface. The GTP binding protein Ras can also activate Akt signalling by binding to 

the p110 subunit of phosphoatidylinositol 3-kinase (PI3K) and increasing translocation to 

the plasma membrane. Ras is mutated in around 20% of human tumours and the 

mutation prevents the hydrolysis of GTP, leaving Ras in the active GTP-bound form. Ras 

is involved in regulating cell proliferation and, when constitutively activated, supports 

deregulated cell growth, survival and invasiveness, all of which are important features of 

the malignant phenotype. Mutation and subsequent constitutive activation of Ras in 

cancer can lead to receptor-independent activation of Akt (Downward 2003). PI3K activity 

is also commonly upregulated in human cancer. Gain of function somatic mutations in the 

PI3K gene has been identified in a variety of human cancers, including ovary, lung, brain, 

breast, liver and colon cancer (Jia, Roberts & Zhao 2009).  

 The PI3K-Akt pathway can also be activated by the disruption of negative 

feedback mechanisms (Figure 4.2). The lipid phosphatase, PTEN (phosphatase and 

tensin homology), negatively regulates the Akt pathway by hydrolysing PI(3,4,5)P3 to 

PI(4,5) P2. PTEN acts as a tumour suppressor and mutations are found in two inherited 

diseases conveying a predisposition to cancer; Cowden disease and Bannayan Zonana 

syndrome. Loss of PTEN strongly correlates with the activation of Akt in tumour cell lines 

(Wu et al. 1998). Furthermore, PTEN +/−mice develop a wide range of tumours. Akt1 

deficiency markedly prevented the development of tumours in PTEN +/−mice confirming 

the central role of Akt in PTEN-mediated tumour formation. Mutation, homozygous 

deletion, promoter methylation and translational modification can all account for PTEN 

silencing. Monoalleleic loss and mutation of PTEN has been observed in a large 
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proportion of human cancers, including 75% of glioma and 50% of endometrial tumours 

respectively (Keniry & Parsons 2008).  

 

4.4 Protein Kinase B as a drug target 

 The central role of PKB in the development of a wide range of tumours makes it 

an excellent therapeutic target for the treatment of many different cancers. Several sites 

on the protein provide functionally important regions that are suitable for binding small 

molecule inhibitors. This includes the ATP binding pocket, the phosphoinositide binding 

pocket of the PH domain, a hinge region lying between the PH and protein kinase 

domains, and the substrate binding groove that lies adjacent to the ATP binding pocket.   

 The architecture of the ATP binding site of all protein kinases is very similar, 

making it challenging to identify highly selective protein kinase inhibitors. This is certainly 

the case for the three Akt isoforms, which share particularly high similarity with other 

members of the AGC kinase family (e.g. PKA, PKC, p70S6K and Rsk). Medina-Franco et 

al (2009) reported the discovery of a novel competitive inhibitor by structure-based virtual 

screening for ATP binding site of AKT2 using sequential molecular docking with two 

crystal structures of AKT2 and experimentally validated the low micromolar AKT2 inhibitor 

(IC50 = 1.5 μM). 

 Allosteric inhibitors do not bind to the ATP binding site or the PH domain, but 

inhibit Akt activity in a manner that requires the PH domain itself. As the compounds bind 

to a site distant from the ATP binding pocket that is likely to be unique to Akt, they exhibit 

minimal activity towards other protein kinases. Merck & Co, Inc developed a novel class 

of allosteric inhibitor MK2206, a chemical derivative which possesses low nanomolar 

potency against the three Akt isoforms and inhibits the growth of several tumour 

xenografts either alone or in combination with other standard chemotherapies (Hirai et al 

2010). The compound promoted a sustained fall in Akt and PRAS40 phosphorylation in 

tumours, blood cells and hair follicles, and evidence for tumour shrinkage was obtained in 
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patients with pancreatic, melanoma and neuroendocrine tumours following MK-2206 

administration (Yap et al. 2010). 

 The PH domain of Akt binds PI(3,4,5)P3, the product of PI3 kinase, as well as 

PI(3,4)P2 which is an immediate metabolite of PI(3,4,5)P3. Both lipids are produced in 

the plasma membrane in response to PI3 kinase activation, thus inhibition of the PH 

domain: phosphoinositide interaction would prevent membrane recruitment and thus 

activation of Akt by PDK1 and mTORC2. The phosphoinositide binding pocket of the PH 

domain is lined by a series of positively charged residues making the discovery of cell 

permeant small molecule inhibitors of the phosphoinositide interaction particularly 

challenging. However, despite this there has been some recent reported success. Two 

distinct PI(3,4,5)P3 competitive compound classes (PIT-1 and PIT-2) have been identified 

that bind to the Akt PH domain in a relatively selective manner (i.e. the compounds failed 

to inhibit PI(3,4,5)P3 binding to the PH domain of Atk and were inactive towards PH 

domains that selectively bound PI(4,5)P2) (Miao et al. 2010). Encouragingly, an analogue 

of PIT-1 blocked the growth of a breast tumour xenograft in mice and induced an 

apoptotic response in the tumour. Unfortunately, this class of compounds possesses a 

Michael acceptor, which can react covalently with proteins making them difficult to 

develop into molecules suitable for clinical development. By contrast, PIT-1 is more drug-

like and so further developments and clinical trials with this compound are awaited with 

some interest. PH domain targeted inhibitors thus represent a promising approach, but 

extensive selectivity data is currently lacking as there are upwards of 300 structurally 

related PH domains in the human genome. 

 An inhibitor that competes with substrate binding might also be expected to have 

improved selectivity for Akt over other AGC kinases on the basis that Akt phosphorylates 

a distinct set of downstream substrates that mediate its biological effects. One such 

compound, PTR6164, is a peptide that was chemically modified to improve its stability 

and cell permeability. PTR6164 is relatively stable in plasma, is well tolerated and inhibits 
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the growth and metastatic spread of prostate tumour xenografts in mice (Litman et al. 

2007). The compound inhibits Akt with low micromolar potency and is 10-fold selective for 

Akt over other serine/threonine kinases including PKA and PKC. Despite promising 

progress, peptide mimics are difficult to progress clinically and issues of therapeutic 

window, bioavailability, potency and cost could provide significant barriers to 

implementation. 

 

4.5 Molecular and Structural Biology of Protein Kinase B 

 Some key features of PKB include the N-terminal pleckstrin homology (PH) 

domain binds PI(3,4,5)P3 and is essential in the activation of the enzyme. The central 

kinase domain contains a classical kinase ATP-binding site which has a solvent 

accessible specificity surface that is partially shielded by a phenylalanine residue, 

Phe439. As a result, this region of the canonical Traxler pharmacophore for ATP-

competitive inhibitors is less accessible (Traxler et al. 1996). The C-terminal domain is a 

regulatory domain containing a hydrophobic motif phosphorylation site. Production of 

PI(3,4,5)P3 in the plasma membrane by PI3K in response to upstream RTK activation 

leads to PKB association with PI(3,4,5)P3 through the PH domain. Membrane-bound PKB 

is phosphorylated in the activation loop (T-loop) of the kinase domain on Thr308 by 

membrane-associated PDK1, and in the hydrophobic motif on Ser473 by various kinases 

including mTORC2, resulting in a stable, activated kinase (Sarbassov et al. 2005). It 

appears that PH domain binding to PI(3,4,5)P3 initiates a structural change that reveals 

the T-loop for phosphorylation by PDK1. Phosphorylation of Ser473 promotes association 

of the hydrophobic motif with a hydrophobic groove in the N-terminal lobe of the kinase 

domain, leading to ordering of the αC-helix and contributing to the stabilisation of the 

active conformation (Figure 4.3). Dissociation of the active kinase from the membrane 

and relocation to the cytosol or nucleus is then possible. 
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 The crystal structure of PKBα PH domain in complex with the inositol head group 

of PI(3,4,5)P3 revealed a highly positively charged, arginine rich, bowl-shaped pocket for 

the inositol (Sarbassov et al. 2005). The lack of binding to the 5-phosphate distinguishes 

PKB from other protein PH domains, e.g. GRP1, and the orientation of the inositol is also 

different. Comparison with the structure of the uncomplexed PH domain indicated a 

conformational rearrangement of the protein upon binding PI(3,4,5)P3 which are 

transmitted to the kinase domain, resulting in further conformational rearrangement 

necessary to present the T-loop to PDK1 for phosphorylation (Figure 4.3). 

 
Figure 4.3: Activation of PKBβ 

 (a) In the inactive PKB structure, the various regions of the kinase domains comprising the α C-

helix of the N-lobe and the activation segment are disordered. Substrate and ATP do not bind. The 

organization of the C-terminal segment with its hydrophobic motif (HM, shown in yellow) is 

indicated approximately. (1GZK). (b) Binding of the C-terminal hydrophobic motif (HM, yellow) with 

the α C-helix is facilitated by phosphorylation of S474. This induces reorganization of the α C-helix 

(pink) and a second phosphorylation in the activation segment (T309) organizes the activation 

segment (red). Binding of ATP and substrate ensues (2JDR). (c). Binding of the hydrophobic motif 

to the α C-helix (1) leads to structural rearrangements in which E200 engages and correctly 

positions K180 (2) that coordinates the binding of ATP in the catalytic cleft. The H196 of the 

ordered α C-helix also engages the (PDK) phosphorylated T309 resulting in a reorientation of the 

activation segment (3). The kinase now binds both ATP and substrate and is fully competent to 

phosphorylate substrate (2JDR). 
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4.6 Structure-based virtual screening 

 Recent advances in combinatorial chemistry and high-throughput screening (HTS) 

have made it possible for chemists to synthesize large numbers of compounds. However, 

this is still a small percentage of the total number that could be synthesized. Virtual 

screening encompasses a variety of computational techniques that allow chemists to 

reduce a huge virtual library to a more manageable size. A key prerequisite is knowledge 

about the spatial and energetic criteria responsible for protein–ligand binding.The aim of 

virtual screening is to identify molecules of novel chemical structure that bind to the 

macromolecular target of interest. Thus, success of a virtual screen is defined in terms of 

finding interesting new scaffolds rather than many of these hits. Low hit rates of 

interesting scaffolds are clearly preferable over high hit rates of already known scaffolds. 

 Structure-based virtual screening involves docking of candidate ligands into a 

protein target followed by applying a scoring function to estimate the likelihood that the 

ligand will bind to the protein with high affinity. Docking describes a process by which two 

molecules fit together in three-dimensional space where the receptor is usually a protein 

and the ligand is either a small molecule or another protein. The quality of the fit is then 

used to rank the small molecules (Kirchmair et al. 2008). Docking predicts the preferred 

orientation of one molecule to a second when bound to each other to form a stable 

complex. Knowledge of the preferred orientation in turn may be used to predict the 

strength of association or binding affinity between two molecules using scoring functions. 

Scoring function is defined as a detailed understanding of the general principles that 

govern the nature of the interactions between the ligands and their protein or nucleic acid 

targets. Scoring function provides a conceptual framework for designing the desired 

potency and specificity (Reddy et al. 2007). 

 Docking methods typically use an energy-based scoring function to identify the 

energetically most favorable ligand conformation when bound to the target. The general 

hypothesis is that lower energy scores represent better protein-ligand bindings compared 

Ligand-2JDR  
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to higher energy values. Therefore, molecular docking can be formulated as an 

optimization problem, where the task is to find the ligand-binding mode with the lowest 

energy. To tackle docking problems and efficiently handle flexibility, search heuristics are 

used. MolDock is a docking algorithm based on a new hybrid search algorithm, called 

guided differential evolution. The guided differential evolution algorithm combines the 

differential evolution optimization technique with a cavity prediction algorithm. The use of 

predicted cavities during the search process, allows for a fast and accurate identification 

of potential binding modes. The docking scoring function of MolDock is based on a 

piecewise linear potential (PLP) where the docking scoring function is extended with a 

new term, taking hydrogen bond directionality into account. Moreover, a re-ranking 

procedure is applied to the highest ranked poses to further increase docking accuracy 

(Thomsen & Christensen 2006). 

 The accuracy of the docking simulation may vary depending on what target is 

being tested and what kind of molecules composes the screening library. Highest speed 

and highest accuracy are ideal, although opposite features for virtual screening through 

docking simulations. Methods which are more complex, considering many 

physicochemical and thermodynamic properties tend to present higher accuracy.  

However, these methods consume more CPU time. Likewise, methods which take into 

account simpler parameters, as shape matching algorithms, are able to predict docking 

conformations in a fast speed, but at lower accuracy rate. Nevertheless, molecular 

docking simulations based on evolution algorithm have shown to be capable to generate 

poses with low root-mean-square deviation (De Azevedo & Walter 2010). The root-mean-

square deviation (RMSD) is the measure of the average distance between the atoms 

(usually the backbone atoms) of superimposed proteins. 

 Crystal structure of Akt2 in complex with glycogen synthase kinase-3β peptide 

(GSK-3β) and 5’-adenylylimidodiphoshate (AMP-PNP) have been described, leading to 

the identification of three micromolar inhibitors (Forino et al. 2005). A crystal structure of 
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Akt2 in complex with ligands is available in the Protein databank. The two structures, 

2UW9 and 2JDR, are quite similar, with backbone RMSD of only 0.36 Å for the whole 

protein and 0.3 Å for the backbone of binding site residues (residues that are within 5 Å of 

ligand). A comparison of binding site residues shows that the main contribution to RMSD 

is due to the flexibility of residues Phe163 and Asp293. In 2JDR, while Asp293 is pointing 

out, Phe163 extends into the binding cavity and is adjusted parallel to the indoline and 

pyridine rings of the flexible ligand which has six rotatable bonds. In 2UW9, these two 

residues are opposite, where Asp263 points inwards; Phe163 is pushed out and has 

turned ~180º due to the rigid ligand which has only three rotatable bonds. Additionally, 

the deep binding component of both ligands form two hydrogen bonds with residues 

Glu230 and Ala232, and an additional bond with Glu236 in 2UW9 and with Asn280 in 

2JDR (Medina-Franco et al. 2009).  The structures of the Akt2 inhibitors reported in PDB 

code 2UW9 and 2JDR are displayed as Ligand-2UW9 and Ligand-2JDR respectively in 

Figure 4.4. 

 Ajmani et al. (2010) reported a QSAR analyses on a wide variety of chemically 

diverse Akt1 inhibitors that revealed the key role of Baumann’s alignment independent 

topological descriptors along with other descriptors such as the number of hydrogen bond 

acceptors, hydrogen bond donors, rotatable bonds and aromatic oxygen (SaaOcount) 

along with molecular branching (chi3Cluster), alkene carbon atom type (SdsCHE-index) 

in governing activity variation. Further, the Group-based QSAR analyses showed that 

chemical variations like presence of hetero-aromatic ring, flexibility, polar surface area 

and fragment length present in the hinge binding fragment are highly influential for 

achieving highly potent Akt1 inhibitors. In addition, the study also reported a k-nearest 

neighbour classification model with three descriptors suggesting the key role of oxygen 

(SssOE-index) and aromatic carbon (SaaCHE-index and SaasCE-index) atoms electro-

topological environment that differentiate molecules binding to Akt1 kinase or PH domain 

(Ajmani, Agrawal & Kulkarni 2010).  
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Figure 4.4: Chemical Structures of PKBβ Inhibitors 
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 The QSAR model for anticancer compounds from seaweeds revealed descriptor 

attributes that correlated well with the QSAR analyses of inhibitors binding to Akt1 kinase 

as reported by Ajmani et al. (2010). QSAR analyses of 157 compounds with cytotoxic 

activity against six different cell lines showed that the anticancer activity were contributed 

by Baumann’s alignment independent topological descriptors along with Oxygen, 

Bromine and Chlorine atoms and aromatic carbon (SaaCHE-index) atoms. In the present 

study, both the ligand and receptor information of 2UW9 and 2JDR structures described 

above was utilized to perform structure-based virtual screening of marine algal 

compounds from SWMD to identify novel Akt2 inhibitors. Akt isozymes are approximately 

80 percent identical and have a high degree of overall homology, thus the study on Akt1 

was further extrapolated to identify Akt2 inhibitors.  

 

4.7 Molecular Docking of ATP-competitive inhibitors with Akt2 

 Molecular docking is a method to evaluate the feasible binding geometries of a 

putative ligand with a target whose target site is known. The binding geometries is often 

known as binding poses, includes, in principle, both the position of the ligand relative to 

the receptor and conformational state of the ligand and the receptor. The three 

dimensional structure of Akt2 in complex with inhibitors was retrieved from the protein 

databank, (PDBID: 2UW9 and 2JDR) at 2.1 Å and 2.3Å RMSD resolution respectively. 

Bioactive conformation was simulated for 2UW9 and 2JDR using Molegro Virtual Docker 

(MVD) and was used to detect the active sites and docking was performed by moldock 

function, which is an implementation of evolutionary algorithms (EAs), focused on 

molecular docking simulations (Thomsen & Christensen 2006). For both crystal 

structures, water molecules, peptide substrate (GSK-3β) and co-crystal inhibitors were 

ignored during docking. From the docking wizard, ligands selected from SWMD with 

cytotoxic activity were used in the QSAR study and Moldock scoring function was applied.  
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 Molecules were prepared at first and bonds, bond orders, explicit hydrogens, 

charges and flexible torsions, were assigned if they were missing by the MVD program to 

both the protein and ligands. MVD was used for active site (pocket) detection on PKBβ 

protein. The ATP binding site was defined as active site box having volumes of 359 Å3 

and 388 Å3 for 2UW9 and 2JDR, respectively. Further, the binding site was defined by 

selecting all atoms within 10 Å of the corresponding crystallographic ligand with the cavity 

detection mode turned on and using default parameters. The Ignore distant atoms option 

was applied to ignore atoms far away from the binding site. It reduces overall computing 

time. The enforce hydrogen bond directionality option was used to check if bonding 

between potential hydrogen bond donors and acceptors can occur. If hydrogen bonding 

was possible, the hydrogen bond energy contribution to the docking score was assigned 

a penalty based on the deviations from the ideal bonding angle. Using this option can 

significantly reduce the number of unlikely hydrogen bonds reported. Internal electrostatic 

interaction and internal hydrogen bond sp2-sp2 torsions are calculated from the pose by 

enabling the ligand evaluation terms. The search algorithm taken was Moldock SE and 

the number of runs taken as 10 and max iterations were 2000 with population size of 50 

and with an energy threshold of 100. At each step least ‘min’ 

torsions/translations/rotations were tested and the one giving lowest energy was chosen. 

If the energy is positive (i.e. because of a clash or an unfavorable electrostatic interaction) 

then additional ‘max’ positions were tested. Pose clustering was done by tabu based 

clustering method, using this clustering technique each solution obtained was added to a 

‘tabu list’: during the docking simulation the poses are compared to the ligands in this 

‘tabu list’. If the pose being docked is closer to one of the ligands in the list than specified 

by the RMSD threshold, an extra penalty term (the Energy penalty) is added to the 

scoring function. This ensures a greater diversity of the returned solutions since the 

docking engine will focus its search on poses different from earlier poses found. The 
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energy penalty was set to 100, RMSD threshold was 2.00 and RMSD calculation by atom 

ID (fast) were set.  

 After the docking simulation was completed the poses which were generated were 

sorted by rerank score. The Rerank Score uses a weighted combination of the terms 

used by the MolDock score mixed with a few addition terms (the Rerank Score includes 

the Steric (by LJ12-6) terms which are LennardJones approximations to the steric energy 

 the MolDock score uses a piecewise linear potential to approximate the steric energy). 

The reranking score function is computationally more expensive than the scoring function 

used during the docking simulation but it is generally better than the docking score 

function at determining the best pose among several poses originating from the same 

ligand (De Azevedo & Walter 2010). Ligand efficiency is most commonly defined as the 

ratio of the free energy of binding over the number of heavy atoms in a molecule (Abad-

Zapatero & Metz 2005). Binding affinities were calculated by MVD, Ligand Efficiency 1 

(LE1) as Moldock score divided by Heavy Atoms count and Ligand Efficiency 2 (LE2) as 

rerank Score divided by Heavy Atoms count. Results of the top ligands whose rerank 

score > -100 were selected. 

 

4.8 Results and Discussion 

 The 157 cytotoxic compounds from SWMD were docked at the ATP binding site of 

2JDR and 2UW9 wherein several molecules showed a better Moldock score than the co-

crystal inhibitor (Figure 4.4). A low degree of consensus between the top ranked scoring 

molecules with each crystal structure (2UW9 and 2JDR) was observed. In fact, only one 

molecule was found in common among the top 10 ranked compounds docked with 

Moldock in both crystal structures. Overall, the molecules were selected based on one of 

the following criteria: a high docking score with rerank score > -100 and ability to make 

hydrogen bonds with Glu230 and Ala232, which is observed in several PKBβ inhibitors 

(Saxty et al 2007, Medina-Franco et al 2009, Vyas, Ghate & Goel 2013). 
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 Docking results in the present study suggested that compound from marine red 

algae RL378, RG004 and RG009 had a good docking score for 2UW9 whereas RL078 

and RC002 had a good docking score for 2JDR (Table 4.1). Docking results showed that 

RL378, a brominated diterpene possessing parguerane skeleton from Laurencia obtusa 

has a good rerank score of 104.23 above the other two in reference to protein 2UW9 and 

forms eight H-bonds interactions (Figure 4.5). The oxygen atom (hydroxyl) of ligand 

formed four H-bonds, one with -NH2 of Ala232 (HO∙∙∙Ala232, 0.66 Å). Second H-bond 

was formed with carbonyl oxygen atom of Glu230 (HO∙∙∙O꞊C Glu230, 1.43 Å), and a third 

H-bond was formed with Glu230 (HO∙∙∙O꞊C Glu230, 2.37 Å). Fourth H-bond was formed 

with carbonyl oxygen atom of Thr213 (HO∙∙∙O꞊C Thr213, 2.5 Å). The oxygen atom of 

hydroxyl group on dimethyltetracyclo moiety formed three H-bonds, one with NH2 of 

Lys181 (HO∙∙∙Lys181, 0.46 Å) and other two H-bonds was formed with Asp293 (HO∙∙∙O꞊C 

Asp293, 2.5 Å) and Thr292 (HO∙∙∙OH Thr292, 0.67 Å).  

 Docking results showed that RG009, an oxygenated desmosterol from Galaxaura 

marginata has second highest rerank score of 103.21 with 2UW9 and eight H-bonds were 

formed between the ligand and protein PKBβ (Figure 4.6).  The oxygen atom (24-

Hydroperoxyl) of ligand formed four H-bonds, one with -NH2 of Ala232 (HO∙∙∙Ala232, 1.6 

Å). Second H-bond was formed with carbonyl oxygen atom of Glu230 (HO∙∙∙O꞊C Glu230, 

1.93 Å), and a third H-bond was formed with oxygen atom of carboxylic acid side chain of 

Glu230 (HO∙∙∙O꞊C Glu230, 2.5 Å). Fourth H-bond was formed with oxygen atom 

(hydroxyl) of Thr213 (HO∙∙∙OH Thr213, 2.44 Å). The oxygen atom (hydroperoxy) of ligand 

formed a fifth bond with -NH2 of Ala232 (HO-O∙∙∙Ala232, 1.5 Å). Sixth H-bond was formed 

between the oxygen atom of cholesta-dien-3-one moiety of the ligand and with -NH2 of 

Lys277 (HO∙∙∙Lys277, 2.38 Å). Seventh and Eighth H-bond was formed between the 

oxygen atom of hydroxycholesterol ring of the ligand and with the carboxylic acid side of 

Asp293 (HO∙∙∙O-C Asp293, 2.5 Å) and oxygen atom of polar side chain of Asn280 

(HO∙∙∙O꞊C Asn280, 2.5 Å) respectively.    
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Table 4.1: Docking results of PKBβ inhibitors 

Ligand name  
Molecular 

formula 

MolDock 

Score 

Rerank 

Score 

No of H 

Bond 

HBond 

Energy 

Ligand efficiency 
Interacting Residues 

LE1  LE2 

PDB: 2UW9 
        

RL378 C24H35BrO6 -139.13 -104.23 8 -9.39 -4.49 -3.36 
Ala 232, Glu 230, Glu 230, Thr 213, 

Thr 292, Asp 293, Lys 181, Lys 277 

RG009 C27H42O4 -135.71 -103.21 8 -14.15 -4.38 -3.33 
Ala 232, Ala 232, Glu 230, Glu 230, 

Thr 213, Asn 280, Asp 293, Lys 277 

RG004 C27H44O3 -130.26 -103.01 7 -10.42 -4.34 -3.43 
Ala 232, Ala 232, Glu 230 Glu 230, 

Thr 213, Lys 277, Glu 279 

PDB: 2JDR 
        

RL078 

Laurenmariannol 
C30H53BrO7 -156.93 -100.91 8 -12.91 -4.13 -2.66 

Ala 232, Glu 230, Glu230, Thr 213, 

Thr 292, Thr 292, Asp 293, Asp 293 

RC002 

Callophycin A 
C19H18N2O3 -123.00 -106.14 5 -9.81 -5.13 -4.42 

Ala 232, Glu 230, Thr 292, Asp 293, 

Lys 181 

Ligand Efficiency 1 (LE1) - Moldock score divided by Heavy Atoms count and Ligand Efficiency 2 (LE2) - rerank Score divided by Heavy Atoms count
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Figure 4.5: Binding mode of ligand RL378 in the ATP site of PKBβ 

 
Docking studies showing 8 hydrogen bond interactions with 2UW9 at Ala 232, Glu 230, Glu 230, 

Thr 213, Thr 292, Asp 293, Lys 181, Lys 277 

 

 

 

Figure 4.6: Binding mode of ligand RG009 in the ATP site of PKBβ 

 
Docking studies showing 8 hydrogen bond interactions with 2UW9 at Ala 232, Ala 232, Glu 230, 

Glu 230, Thr 213, Asn 280, Asp 293, Lys 277 
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 RG004 (25-hydroperoxycholesta-5,23(E)-dien-3β-ol), an oxygenated desmosterol 

from Galaxaura marginata on docking with protein PKBβ (2UW9), the best pose showed 

seven H-bonds interactions (Figure 4.7). The oxygen atom (hydroxyl) of ligand formed 

four H-bonds, one with -NH2 of Ala232 (HO∙∙∙Ala232, 0.77 Å). Second H-bond was 

formed with carbonyl oxygen atom of Glu230 (HO∙∙∙O꞊C Glu230, 2.26 Å), and a third H-

bond was formed with oxygen atom of carboxylic acid moiety of Glu230 (HO∙∙∙O꞊C 

Glu230, 2.49 Å). Fourth H-bond was formed with oxygen atom (hydroxyl) of Thr213 

(HO∙∙∙OH Thr213, 2.5 Å). The oxygen atom (hydroperoxy) of ligand formed a fifth bond 

with -NH2 of Ala232 (HO-O∙∙∙Ala232, 1.36 Å). Sixth and Seventh H-bond was formed 

between the oxygen atom (heptadec-7-en-5-ol) of the ligand and with -NH2 of Lys277 

(HO∙∙∙Lys277, 2.5 Å) and oxygen atom of carboxylic acid moiety of Glu279 (HO∙∙∙O꞊C 

Glu279, 0.07 Å) respectively. 

 The overall binding of RL078 (Laurenmariannol), an oxygenated triterpenoids from 

Laurencia mariannensis is illustrated in Figure 4.8. RL078 formed eight H-bonds with 

PKBβ enzyme (2JDR) with rerank score of 100.91. The oxygen atom (hydroxyl) of ligand 

formed two H-bonds, one with -NH2 of Ala232 (HO∙∙∙Ala232, 2.12 Å)and another H-bond 

was formed with carbonyl oxygen atom of Glu230 (HO∙∙∙O꞊C Glu230, 2.5 Å).  The oxygen 

atom (5-hydroxy) of ligand formed a third H-bond was formed with carbonyl oxygen atom 

of Glu230 (HO∙∙∙O꞊C Glu230, 2.45 Å). The oxygen atom of hydroxylmethyl group 

substituted on tetrahydrofuran moiety of RL078 formed two H-bonds, fourth H-bond with 

oxygen atom (hydroxyl) of Thr292 (HO∙∙∙OH Thr292, 2.31 Å) and another fifth H-bond 

with -NH2 of Asp293 (HO∙∙∙Asp293, 1.44 Å). The oxygen atom of 8a-

methyloctahydropyrano moiety of ligand formed three H-bonds, a sixth H-bond with 

oxygen atom (hydroxyl) of Thr292 (HO∙∙∙OH Thr292, 1.23 Å), seventh H-bond with 

oxygen atom (hydroxyl) of Thr213 (HO∙∙∙OH Thr213, 2.5 Å) and  eight H-bond with -NH2 

of Asp293 (HO∙∙∙Asp293, 1.60 Å).  
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Figure 4.7: Binding mode of ligand RG004 in the ATP site of PKBβ 

 
Docking studies showing 7 hydrogen bond interactions with 2UW9 at Ala 232, Ala 232, Glu 230 

Glu 230, Thr 213, Lys 277, Glu 279. 

 

 

 

Figure 4.8: Binding mode of ligand RL078 in the ATP site of PKBβ 

 
Docking studies showing 8 hydrogen bond interactions with 2JDR at Ala 232, Glu 230, Glu230, 

Thr 213, Thr 292, Thr 292, Asp 293, Asp 293. 
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 RC002 (Callophycin A), tetrahydro-β-carboline was isolated from the methanol 

extract of red algae Callophycus oppositifolius and was shown to mediate anticancer and 

cytotoxic effects on a series of human tumour cell lines and a normal mammalian cell line 

(Ovenden et al. 2011). Five H-bonds were formed between ligand RC002 and protein 

PKBβ (2JDR) with a rerank score of 106.14 (Figure 4.9). The oxygen atom (hydroxyl) of 

ligand RC002 formed two H-bonds, one with -NH2 of Ala232 (HO∙∙∙Ala232, 0.73 Å) and 

another carbonyl oxygen atom of Glu230 (HO∙∙∙O꞊C Glu230, 2.5 Å). The oxygen atom of 

carboxylic acid moiety formed H-bond with NH2 of Lys181 (C꞊O∙∙∙Lys181, 1.93 Å). 

Oxygen atom (hydroxyl) of carboxylic acid formed two H-bonds, one with -NH2 of Asp293 

(HO∙∙∙Asp293, 1.31 Å) and another with carbonyl oxygen atom of Thr292 (HO∙∙∙Thr292, 

2.5 Å). Known PKBβ inhibitors have shown that Glu230 and Ala232 are important amino 

acids for binding at the ATP site. Herein, RC002 which has a good docking score and 

ligand efficiency better than the other ligands studied to be an active PKBβ inhibitor hit 

and confirms the affinity with Glu230 and Ala232. 

 

4.9 In silico ADMET analysis 

 The action of a drug is dependent on a sufficient amount of it being able to get into 

the body (absorption), find its way to the correct site of action (distribution), and for it to 

remain there unchanged (metabolism) for long enough time (excretion) to elicit a 

pharmacological response. This balance between Absorption, Distribution, Metabolism 

and Excretion (ADME) is referred to as Pharmacokinetics (PK) and is dictated by the 

physical and chemical properties of the drug, and as such can be altered by altering the 

drug. Every compound will have a unique PK profile which will affect how well it works as 

a drug. Some compounds benefit from having a high but short exposure while others 

benefit from a lower but longer presence in the body. Major technological advances in the 

drug discovery field have revolutionized absorption, distribution, metabolism, excretion 

and toxicity (ADMET) profiling of new chemical entities.  
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Figure 4.9: Binding mode of ligand RC002 in the ATP site of PKBβ 

 
Docking studies showing 5 hydrogen bond interactions with 2JDR at Ala 232, Glu 230, Thr 292, 

Asp 293, Lys 181 

 

 

Figure 4.10: ADMET prediction of RC002  

 

Prediction results on OSIRIS property explorer are valued and color coded. Properties with high 

risks of undesired effects like mutagenicity or a poor intestinal absorption are shown in red. 

Whereas a green color indicates drug-conform behavior. 

 

RC002  

CALLOPHYCIN A  
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 ADMET properties can be loosely classified into two categories, namely, the 

‘‘physicochemical’’ and ‘‘physiological’’ categories. The physicochemical properties, which 

include aqueous solubility, logarithm of octanol–water partition coefficient (log P), 

logarithm of octanol–water distribution coefficient (log D), and pKa, are governed by 

simple physicochemical laws. On the other hand, the physiological ADMET properties, 

which can be further grouped into in vitro ADMET properties (such as Caco-2 

permeability and MDCK permeability, liver microsomes, etc.) and in vivo pharmacokinetic 

properties (such as oral bioavailability, human intestinal absorption, plasma protein 

binding, urinary excretion, area under the plasma concentration–time curve, total body 

clearance, volume of distribution, and elimination half-time (t1/2)) are governed by many 

factors. Various physiological factors reduce the oral bioavailability of drugs prior to their 

entry into the systemic circulation; these factors may include, but are not limited to, poor 

absorption from the gastrointestinal tract, degradation or metabolism of the drug prior to 

absorption, and hepatic first-pass effect. 

 The progress made in the in vitro experimental determination of the ADMET 

properties fuelled the growth in the predictive ADMET. The process of in silico model 

development improved significantly with the availability of high quality data as well newer, 

more accurate statistical methods of analysis. The ultimate goal of the in silico prediction 

of ADMET properties is the accurate prediction of the in vivo pharmacokinetics of a 

potential drug molecule in man, whilst it exists as only a virtual structure. This requires an 

integrated suite of models covering each of the processes involved and their 

incorporation into a full ‘drug design’ software package which combines ADME 

predictions with those for pharmacological properties, stability, chemical tractability, etc., 

to produce a molecule with the optimal combination of properties. OSIRIS property 

explorer which uses Chou and Jurs algorithm, based on computed atom contributions 

was used to predict the in silico pharmacokinetic properties and toxicities (Sander et al. 

2009). 
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 Pharmacokinetic properties and toxicities were predicted for all the five ligands 

that showed good docking results; RL378, RG009, RG004, RL078 and RC002. Results of 

pharmacokinetic properties and toxicity analysis are shown in Table 4.2. Solubility and 

partition coefficient were calculated for pharmacokinetic property while for toxicity study, 

mutagenicity, tumorigenicity, irritation effect and risk of reproductive effect were predicted. 

Results of in silico pharmacokinetic and toxicity study showed good pharmacokinetic 

properties. The log P value was predicted to determine hydrophilicity of the compounds. It 

has been suggested that high log P value is associated with poor absorption or 

permeation and it must be less than 5. This study suggested that three the compounds 

confirmed to this limit, and RC002 has better log P value than the others (Figure 4.10).  

Typically, low solubility is associated with bad absorption, so the general aim is to avoid 

poorly soluble compounds. The aqueous solubility (log S) of a compound significantly 

affects its absorption and distribution characteristics. The predicted log S values of the 

studied compounds were within the acceptable limit for only two compounds. Drug score 

was calculated to judge the compound’s overall potential as a drug candidate which 

showed that RC002 has higher score (0.79) compared to the other compounds. 

 
Table 4.2: In silico ADMET prediction of PKBβ inhibitors 

Physicochemical and ADMET 
parameters/ properties 

RL378 RG004 RG009 RL078 RC002 

Mutagenic No Yes Yes No No 

Tumorigenic No Yes Yes No No 

Irritant Yes Yes Yes No No 

Reproductive effective No No No No No 

cLog P 2.65 5.98 5.32 3.22 1.74 

Solubility -4.35 -5.89 -5.54 -5.58 -2.91 

Molecular weight 498 416 430 604 322 

Drug likeness -1.31 -2.52 -1.79 -10.96 1.32 

Drug score 0.22 0.04 0.05 0.19 0.79 
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 In conclusion, a novel low micromolar PKBβ inhibitor was identified by virtual 

screening. The molecule has a different scaffold with respect to published PKBβ inhibitors 

and represents the starting point for an optimization program. Further development of 

RC002 will include exploring the structure-activity relationship required to obtain the 

desired PKB selectivity. 
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Chapter 5 

SUMMARY AND CONCLUSION  

  

 In the present study, anticancer potential of marine algal secondary metabolites 

were investigated using a chemoinformatics approach. Seaweeds which produce distinct 

secondary metabolites that have novel structures with pronounced biological activity, this 

has been documented in scientific literatures but this data is not available as organized 

information to expedite drug discovery. This lacuna instigated a need to design and 

create an exclusive database for marine algal compounds to transform information to 

knowledge. Seaweed metabolite database (SWMD) was created and hosted on a publicly 

accessible domain (www.swmd.co.in) which has comprehensive information of marine 

algal secondary metabolites which includes its physio-chemical properties and biological 

activity. SWMD has 1055 compound entries from green, red and brown algae wherein for 

300 compounds (~30%) biological activity with special emphasis on anticancer activity 

has been recorded. Red alga of the genus Laurencia has the highest number of 

compounds in the database with 542 compound entries. 187 unique compounds are in 

SWMD which are not available in the chemical repository databases such as 

Chemspider, PubChem and SuperNatural. SWMD also stands out in furnishing additional 

information on the geographical origin of the marine algae with references. Moreover, 

comparative analyses of the database revealed distinct features of the compounds such 

as 618 (59%) are Lipinski compliant or ‘drug-like’ molecules, 229 (22%) are ‘lead-like’ 

molecules and 48 (4.5%) are ‘fragment-like’.  

 Quantitative Structure–Activity Relationships (QSAR) studies against many 

different cancer cell lines will elucidate the importance of a particular class of descriptor in 

eliciting anticancer activity against a cancer type and would eventually guide a medicinal 

chemist to design new and potent anticancer compounds. In SWMD, 157 compounds 

have anticancer activity against six different cancer cell lines namely MCF-7, A431, HeLa, 
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HT-29, P388 and A549, each having more than 40 compounds which were subjected to 

comprehensive QSAR modeling studies. The pIC50 (-log IC50) values were used as the 

dependant variables and 630 molecular descriptors (239 physicochemical and 391 

alignment independent) were used as independent variables to construct the dataset. A 

hybrid-GA (genetic algorithm) optimization technique for descriptor space reduction and 

multiple linear regression analysis (MLR) approach was used as fitness functions. The 

effect of the number of descriptors on the correlation coefficient values for all the models 

were analyzed and in most cases four descriptor-based models were adequate.  

 The selected descriptors were then used for developing the QSAR prediction 

models by using the MLR wherein 22 descriptors (14 Physicochemical and 8 Alignment 

independent) were used in different combinations. Cell lines HeLa and MCF-7 showed 

good statistical quality (R2 ~ 0.75, Q2 ~ 0.65) followed by A431, HT29 and P388 cell lines 

with reasonable statistical values (R2 ~ 0.70, Q2 ~ 0.60). The molecular descriptor 

analyses revealed the key role of Baumann’s alignment independent topological 

descriptors along with other descriptors such as the number of three, five and six 

membered rings along with molecular branching (chiV3Cluster), alkene carbon atom type 

(SdssCE-index and SsssCHE-index) in governing activity variation. In addition, this study 

suggests the role of Oxygen, Bromine and Chlorine atoms and aromatic carbon 

(SaaCHE-index) atoms electro-topological environment that differentiate the molecules 

anticancer activity. The models developed were interpretable, with good statistical and 

predictive significance. These models can be useful for predicting the biological activity of 

new untested cytotoxic compounds and virtual screening for identifying new lead 

compounds. 

 Protein kinase B (PKB) is a key mediator of proliferation and survival pathways 

that are critical for cancer growth. Therefore, inhibitors of PKB are useful agents for the 

treatment of cancer. Ajmani et al. (2010) reported a QSAR analysis on a wide variety of 

chemically diverse PKBα inhibitors that revealed the key role of oxygen and aromatic 
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carbon atoms along with Baumann’s alignment independent topological descriptors that 

differentiate molecules binding to PKBα kinase or PH domain. The kinase domains of all 

isoforms have a large homology of more than 85% and the binding pocket residues are 

the same. Herein, a structure-based virtual screening of 157 anticancer compounds 

combined with the docking study of two crystal structures of PKBβ was performed as a 

rational strategy for identification of novel ATP-competitive inhibitors of PKBβ. Known 

PKBβ inhibitors have shown that Glu230 and Ala232 are important amino acids for 

binding at the ATP site and docking results showed that five compounds had a good 

docking score, wherein RC002 which has a high docking score and ligand efficiency 

better than the other ligands to be an active hit PKBβ inhibitor. Results of in silico 

pharmacokinetic and toxicity studies showed that RC002 had a high score (0.79) 

compared to the other compounds. These results further encourages discovering newer 

PKBβ inhibitors for the treatment of cancer and screening metabolites of marine algae for 

particular beneficial biological effects which will undoubtedly pay off in the future. 

 The present study has shown a roadmap for further exploiting the 

chemoinformatics approach in cancer drug discovery using various molecular targets for 

the development of novel anticancer agents from marine algae. The same approach can 

further be used for drug discovery and development purposes for other diseases as well. 

The future directions of this work can be extended specifically to marine algae of Indian 

waters and the other marine organisms in the bountiful oceans - a source of renewable 

resources.  
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Abstract: 
The cataloguing of marine chemicals is a fundamental aspect for bioprospecting. This has applications in the development of drugs from marine sources. 
A publicly accessible database that provides comprehensive information about these compounds is therefore helpful. The Seaweed Metabolite Database 
(SWMD) is designed to provide information about the known compounds and their biological activity described in the literature. Geographical origin of 
the seaweed, extraction method and the chemical descriptors of each the compounds are recorded to enable effective chemo-informatics analysis. Cross-
links to other databases are also introduced to facilitate the access of information about 3D Structure by X-ray and NMR activity, drug properties and 
related literature for each compound. This database currently contains entries for 517 compounds encompassing 25 descriptive fields mostly from the Red 
algae of the genus Laurencia (Ceramiales, Rhodomelaceae). The customized search engine of this database will enable wildcard querying, which includes 
Accession Number, Compound type, Seaweed Binomial name, IUPAC name, SMILES notation or InChI. 
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Background:  
Marine chemicals have novel structures with pronounced biological 
activity and pharmacology. The study of such chemicals therefore is 
promising. High throughput screening of marine metabolites for a given 
drug target can be achieved only if natural compounds are available as a 
database. Creating a database of natural products and sharing it with huge 
scientific community facilitates the understanding of basic mechanism of 
compounds and can reduce the timeline in drug discovery [1]. A publicly 
accessible database that provides comprehensive information about these 
compounds is therefore helpful to the relevant communities. 
 
Seaweeds are among the first marine organisms chemically analyzed, with 
more than 3,600 articles published describing 3,300 secondary metabolites 
from marine plants and algae, and they still remain an almost endless 
source of new bioactive compounds. This database is focused on bioactive 
compounds that target the pharmaceutical market, along with the spectrum 
of biological activities (Table 1). Among macroalgae, significantly more 
rich in secondary metabolites appear the brown and red algae, with the 
latter being the top producers of halogenated metabolites. Red algae of the 
genus Laurencia (Ceramiales, Rhodomelaceae) are some of the most 
prolific producers of secondary metabolites in the marine environment. 
Secondary metabolites from these algae are predominantly sesquiterpenes, 
diterpenes, triterpenes and C15-acetogenins, characterized by the presence 
of halogen atoms in their chemical structures. Most Laurencia species 
accumulate a characteristic major metabolite or a class of compounds not 
widely distributed within the genus [2]. 

Database Structure:  
The entries of this database are generated from a text mining of published 
articles. Our database currently contains 356 entries of compounds found 
from literature. SWMD is designed in MySQL 5.1.36 and PHP 5.3.0. 
These compounds cover 37 different species of Laurencia and other 
genera, which is shown is Table 2A, 2B respectively. Geographical origin 
and extraction method directed for each of these compounds were searched 
and included in the database along with the biological activity exhibited.  
 
Compounds in SWMD are annotated by molecular property. These include 
molecular weight, Monoisotopic Mass, Molar Refractivity, number of 
rotatable bonds, calculated LogP, number of hydrogen-bond donors, 
number of hydrogen-bond acceptors, Polar Surface Area and Van der 
Waals surface area. The chemical descriptors and 3D structure for each 
compound were calculated using Marvinsketch [3] and Chemsketch [4], 
respectively. Lipophilicity or calculated LogP is predicted using ALOGPS 
2.1 program [5].  For molecular visualization, the user needs the free 
Chime-Plugin from MDL (available for Windows, SGI, Mac) or the Java2 
Runtime Environment. 
 
The SWMD database web interface is shown in Figure 1. This database is 
searchable by Accession Number, Compound type, Seaweed Binomial 
name, IUPAC name, SMILES notation or InChI.  The search is case 
insensitive. In a query, a user can specify full name or any part of the name 
in a text field. Wild characters of '%' and '_' are supported in text field. 
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Figure 1: The search result page of SWMD. 
 

 
Figure 2: Molecular properties of compounds in SWMD. (A) molecular weight; (B) calculated LogP; (C) violations of Lipinski’s rule-of-fives; (D) 
hydrogen-bond donors; (E) hydrogen-bond acceptors and (F) rotatable bonds. 
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Database features: 
SWMD has a web interface at http://www.swmd.co.in. The database is 
unique in providing comprehensive information of compounds from 
seaweeds via 25 descriptive fields. Each entry in the database is 
categorized into sections such as General information, Structure 
information, Predicted properties and Bibliographic references. The 
general information part of the database entry displays the compound’s 
unique SWMD accession number viz. XY123 where X represents the 
Macroalgae - Brown, Green and Red by B, G and R respectively and Y 
represent the first letter of the genus. It also encompasses compound type, 
and an external links to the compound’s PUBCHEM ID and Chemspider 
ID (if available) are provided. Binomial name is followed by geographical 
origin and biological activity which was curated from literature sources. 
The Structure of the compound, its name in IUPAC, SMILES notation and 
InChI are displayed in structure information along with atomic coordinates 
in MOL and PDB format which can be downloaded for 3D molecular 
visualization [6]. The predicted properties display the pre-computed 
chemical descriptors of the compounds and reference section lists the 
citations relevant to the respective compounds with external links to 
PubMed if available. 
 
SWMD currently contains entries for 517 compounds encompassing 25 
descriptive fields mostly from the Red algae of the genus Laurencia 
(Ceramiales, Rhodomelaceae) (Table 2 in supplementary material). The 
number of compounds in SWMD is growing, and the numbers reported 
here should be considered a representative snapshot; see the Web-page for 
up-to-date statistics. Of these 517 compounds, 331 are Lipinski compliant 
[7], with the caveat that we have used ALOGPS 2.1 program [5] as a 
surrogate for c Log P between -3.5 and 5, MW ≤ 500 g•mol-1, a maximum 
of 10 H bond acceptors and 5 H bond donors. Of these, 107 are “lead-like” 
molecules [8, 9], which have MW = 150-350 g•mol-1, c Log P < 4, H bond 
donors ≤ 3, and H bond acceptors ≤ 6. A total of 27 molecules are 

“fragment-like” [10] with c Log P between − 2 and 3, MW < 250 g•mol-1, 
H bond donors < 3, H bond acceptors < 6 and rotatable bonds < 3 (Figure 
2). 
 
Conclusion and Future Perspectives:  
The data presented in SWMD can be effectively used for chemo-
informatics studies like QSAR analysis, pharmacophore search, molecular 
docking etc. pertaining to drug discovery. It also portrays the span of 
secondary metabolites available in seaweeds and the need to preserve the 
perishing marine ecosystem.  The database will be extended with more 
data on molecular interactions, embedded interactive visualization tools 
and additional chemical descriptors. The users are also welcome to 
contribute relevant data to the database via email to authors. The dataset 
and web interface shall be upgraded periodically. 
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Supplementary material: 
 
Table 1: Biological Activity of Some Seaweed Metabolites 

 
Table 2: Marine algae and Laurencia species listed in SWMD with number of entries 

Marine algae number Laurencia species number 
Boergeseniella fruticulosa 1 Laurencia aldingensis 4 
Corallina granifera 1 Laurencia caduciramulosa 5 
Cutleria multifida 1 Laurencia calliclada 1 
Cystoseira mediterranea 1 Laurencia cartilaginea 4 
Dictyota dichotoma 4 Laurencia catarinensis 14 
Enteromorpha compressa 1 Laurencia claviformis 1 
Galaxaura marginata 14 Laurencia composita 12 
Gelidium crinale 1 Laurencia decumbens 14 
Halymenia floresii 1 Laurencia glandulifera 12 
Hypnea musciformis 1 Laurencia intermedia 3 
Jania Rubens 7 Laurencia intricata 5 
Laurencia 465 Laurencia karlae 6 
Padina pavonica 1 Laurencia luzonensis 21 
Phyllophora crispa 1 Laurencia majuscula 38 
Polysiphonia morrowii 1 Laurencia mariannensis 21 
Sphaerococcus coronopifolius 9 Laurencia microcladia 25 
Sporochnus pedunculatus 1 Laurencia nidifica 2 
Taonia atomaria 1 Laurencia nipponica 12 
Undaria pinnatifida 5 Laurencia obtusa 95 
TOTAL 517 Laurencia okamurai 7 
  Laurencia omaezakiana 4 
  Laurencia paniculata 1 
  Laurencia pannosa 3 
  Laurencia papillosa 1 
  Laurencia perforata 3 
  Laurencia saitoi 15 
  Laurencia scoparia 19 
  Laurencia similis 28 
  Laurencia snyderiae 2 
  Laurencia sp. 42 
  Laurencia subopposita 12 
  Laurencia thyrsifera 1 
  Laurencia tristicha 14 
  Laurencia undulata 1 
  Laurencia venusta 3 
  Laurencia viridis 12 
  Laurencia yonaguniensis 2 
  TOTAL 465 

 

Compound Biological activity 
Laurinterol Cytotoxic - K562(IC50=128.3µM); MCF7(IC50=67.2µM); PC3(IC50=76.6µM); HeLa(IC50=83.9µM); 

A431(IC50=74.6µM); CHO(IC50=165.8µM); NSCLC-N6(IC50=26.5µM) 
(+)-α-Isobromo-cuparene Cytotoxic - HT29(IC50=130.4µM); MCF7(IC50=177.6µM); PC3(IC50=191.2µM); HeLa(IC50=204.3µM); 

A431(IC50=198.4µM) 
Isolaurenisol Cytotoxic - K562(IC50=127.4µM); MCF7(IC50=95.5µM); PC3(IC50=103.2µM); HeLa(IC50=88.6µM); 

A431(IC50=122.0µM); CHO(IC50=165.5µM) 
Caespitenone Cytotoxic - HT29(IC50=18.9µM); MCF7(IC50=19.7µM); A431(IC50=21.6µM) 
(8R*)-8-bromo-10-epi-β-snyderol Antimalarial - Plasmodium falciparum D6 clones(IC50=2700ng/mL); W2 clones(IC50=4000ng/mL)  
Majapolene B Antibacterial - Chromobacterium violaceum(MIC=20µg/disc); Proteus mirabilis(MIC=20µg/disc); Proteus 

vulgaris(MIC=20µg/disc); Erwinia sp(MIC=10µg/disc); Vibrio parahaemolyticus(MIC=20µg/disc); Vibrio 
alginolyticus(MIC=20µg/disc); 

Laurenditerpenol Inhibits hypoxia-activated (hypoxia-inducible factor-1) HIF-1 (IC50=0.4µM) and hypoxia-induced VEGF (a potent 
angiogenic factor) in T47D cells 


